Molecular and Cellular Mechanisms of Multistage Carcinogenesis; Role of Oncogenes and Intercellular Communication

  • Hiroshi Yamasaki
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 181)


It is now widely accepted that the process by which a normal cell becomes malignant is multistage (1–3). This notion is supported from various aspects, including molecular biology studies and epidemiological analysis of human cancer (1–5). The latest evidence for the multistage nature of the carcinogenesis process has come from the use of transgenic mice which contain various introduced oncogenes (6,7). For example, in transgenic mice which harbour a c-myc gene linked to murine mammary tumour virus promoter, mammary gland tumours are observed. However, these tumours are discrete; in other words, not all cells participate to form tumours in spite of the fact that each cell harbours the activated myc gene (8). Similar results were obtained with transgenic mice which contained various other introduced oncogenes (for review, 6,7). Thus it is apparent that oncogene expression in transgenic mice is important but not sufficient to produce tumours, supporting the concept of multistage carcinogenesis. An apparent exception has recently been reported: transgenic mice containing the neu oncogene developed mammary gland tumours in which all cells participated (9). This particular study suggests a single step carcinogenesis as claimed by the authors (9) but further analysis is necessary to determine whether or not other events are involved in the genesis of tumours in these transgenic mice.


Mouse Skin Intercellular Communication Cellular Oncogene Multistage Carcinogenesis Mouse Epidermal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. J. Slaga, A. Sivak, and R.K. Boutwell, “Mechanism of Tumor Promotion and Cocarcinogenesis”, Raven Press, New York (1978).Google Scholar
  2. 2.
    E. Hecker, N.E. Fusenig, W. Kunz, F. Marks, and H.W. Thielmann, “Cocarcinogenesis and Biological Effects of Tumor Promoters”, Raven Press, New York (1982).Google Scholar
  3. 3.
    M. Borzsonyi, N.E. Day, K. Lapis, and H. Yamasaki, “Models, Mechanisms and Etiology of Tumor Promotion” IARC Scientific Publications No. 56, IARC, Lyon (1984).Google Scholar
  4. 4.
    R. Doll, An epidemiological perspective of the biology of cancer, Cancer Res. 38:3573 (1973).Google Scholar
  5. 5.
    M. Hollstein and H. Yamasaki, Understanding multi-stage carcinogenesis at the molecular level: Notes on recent progress, in: “Biologically Based Methods for Cancer Risk Assessment”, C.C. Travis, ed., Plenum Publishing Corp., New York (1989) in press.Google Scholar
  6. 6.
    R. D. Palmiter and R.L. Brinster, Transgenic mice, Cell 41:343 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    S. J. Compere, P. Baldacci, and R. Jaenisch, Oncogenes in transgenic mice, Biochim. Biophys. Acta 948:129 (1988).PubMedGoogle Scholar
  8. 8.
    T. A. Stewart, P.K. Pattengale, and P. Leder, Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes, Cell 38:627 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    W. J. Muller, E. Sinn, P.K. Pattengale, R. Wallace, and P. Leder, Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene, Cell 54:105 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    I. Berenblum, Sequential aspects of chemical carciogenesis: skin, in: “Cancer, a Comprehensive Treatise” vol. 1, F.F. Becker, ed., Plenum Press, New York (1975).Google Scholar
  11. 11.
    T. J. Slaga, S.M. Fischer, K. Nelson, and G.L. Gleason, Studies on the mechanism of skin tumor promotion; evidence for several stages of promotion. Proc. Natl. Acad. Sci. USA 77:3659 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    G. Furstenberger, D.L. Berry, B. Sorg, and F. Marks, Skin tumor promotion by phorbol esters is a two-stage process, Proc. Natl. Acad. Sci. USA 78:7722 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    N. E. Day and C.C. Brown, Multistage models and primary prevention of cancer, J. Natl. Cancer Inst. 64:977 (1980).PubMedGoogle Scholar
  14. 14.
    H. Yamasaki, Multistage carcinogenesis: Implications for risk estimation, Cancer and Metastasis Reviews 7:5 (1988).PubMedCrossRefGoogle Scholar
  15. 15.
    F. J. Burns, M. Vanderlaan, E. Snyder, and R.E. Albert, Induction and progression kinetics of mouse skin papillomas, in: “Carcinogenesis, A Comprehensive Survey, vol. 2: Mechanisms of Tumor Promotion and Cocarcinogenesis”, T.J. Slaga, A.R. Sivak, R.K. Boutwell, eds., Raven Press, New York (1978).Google Scholar
  16. 16.
    H. Hennings, R. Shores, M.L. Wenk, E.F. Spangler, R. Tarone, and S.H. Yuspa, Malignant conversion of mouse skin tumors is increased by tumor initiators and unaffected by tumor promoters. Nature 304:67 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    S. H. Yuspa, D. Morgan, U. Lichti, E.F. Spangler, D. Michael, A. Kilkenny, and H. Hennings, Cultivation and characterization of cells derived from mouse skin papillomas induced by an initiation-promotion protocol. Carcinogenesis 7:949 (1986).PubMedCrossRefGoogle Scholar
  18. 18.
    H. Hennings, D. Michael, C. Cheng, P. Steinert, K. Holbrook, and S.H. Yuspa, Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19:245 (1980).PubMedCrossRefGoogle Scholar
  19. 19.
    D. R. Miller, A. Viaje, C.M. Aldaz, C.J. Conti, and T.J. Slaga, Terminal differentiation-resistant epidermal cells in mice undergoing two-stage carcinogenesis. Cancer Res. 47:1935 (1987).PubMedGoogle Scholar
  20. 20.
    S. H. Yuspa and D.L. Morgan, Mouse skin cells resistant to terminal differentiation associated with initiation of carcinogenesis, Nature 283:72 (1981).CrossRefGoogle Scholar
  21. 21.
    S. H. Yuspa, A. Kilkenny, and D.R. Roop, Aberrant differentiation in mouse skin carcinogenesis, in: “Cell Differentiation, Genes and Cancer”, T. Kakunaga, T. Sugimura, L. Tomatis, and H. Yamasaki, eds., IARC Scientific Publications No. 92, International Agency for Research on Cancer, Lyon (1988).Google Scholar
  22. 22.
    C. Lasne, A. Gentil, and I. Chouroulinkov, Two-stage malignant transformation of rat fibroblasts in tissue culture, Nature 247:490 (1974).PubMedCrossRefGoogle Scholar
  23. 23.
    S. Mondai and C. Heidelberger, Transformation of C3H-10 1/2 C18 mouse embryo fibroblasts by ultraviolet irradiation and a phorbol ester, Nature 260:710 (1976).CrossRefGoogle Scholar
  24. 24.
    T. Hirakawa, T. Kakunaga, H. Fujiki, and T. Sugimura, A new tumor-promoting agent, dihydroteleocidin B, markedly enhances chemically-induced malignant cell transformation, Science 216:527 (1982).PubMedCrossRefGoogle Scholar
  25. 25.
    E. Rivedal and T. Sanner, Promotional effect of different phorbol esters on morphological transformation of hamster embryo cells. Cancer Lett. 17:1 (1982).PubMedCrossRefGoogle Scholar
  26. 26.
    H. Yamasaki, In-vitro approaches to identify tumor promoting agents; cell transformation and intercellular communication, in: “Food Additives and Contaminants — Analysis, Surveillance, Evaluation, Control” Vol. 1, R. Walker, and M.E. Knowles, eds, Taylor & Francis, London (1984).Google Scholar
  27. 27.
    C. A. Linsell and F.G. Peers, Field studies on liver cell cancer, in “The Origins of Human Cancer” vol. IV, H.H. Hiatt, J.D. Watson, and J.A. Winsten, eds, Cold Spring Harbor Press, Cold Spring Harbor, NY (1977).Google Scholar
  28. 28.
    I. J. Selikoff and E.C. Hammond, Asbestos and smoking (editorial), J. Am. Med. Assoc. 242:458 (1979).CrossRefGoogle Scholar
  29. 29.
    J. M. Kaldor and N.E. Day, Interpretation of epidemiological studies in the context of the multistage model of carcinogenesis, in: “Mechanisms of Environmental Carcinogenesis- Vol. II, Multistep Models of Carcinogenesis”, J.C. Barrett, ed., CRC Press, Boca Raton, FL (1987).Google Scholar
  30. 30.
    J. M. Bishop, The molecular genetics of cancer, Science 235:305 (1987).PubMedCrossRefGoogle Scholar
  31. 31.
    C. Almoguera, D. Shibata, K. Forrester, J. Martin, N. Arnheim, and M. Perucho, Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53:549 (1988).PubMedCrossRefGoogle Scholar
  32. 32.
    J. L. Bos, E.R. Fearon, S.R. Hamilton, M. Verlaan-de-Vries, J.H. van Boom, A.J. van der Eb, and B. Vogelstein, Prevalence of ras gene mutations in human colorectal cancers, Nature 327:293 (1987).PubMedCrossRefGoogle Scholar
  33. 33.
    G. Klein, The approaching era of the tumor suppressor genes, Science 238:1539 (1987).PubMedCrossRefGoogle Scholar
  34. 34.
    D. I. H. Linzer, The marriage of oncogenes and anti-oncogenes, TIG 4:245 (1988).PubMedCrossRefGoogle Scholar
  35. 35.
    H. Zarble, S. Sukumar, A.V. Arthur, D. Martin-Zanca, and M. Barbacid, Direct mutagenesis of H-ras-1 oncogenes by nitroso-methyl-urea during initiation of mammary carcinogenesis in rats. Nature 315:382 (1985).CrossRefGoogle Scholar
  36. 36.
    D. W. Stacey and H.F. Kung, Transformation of NIH3T3 cells by microinjection of Ha-ras p21 protein, Nature 310:508 (1984).PubMedCrossRefGoogle Scholar
  37. 37.
    S. Dandekar, S. Sukumar, H. Zarbl, L.J.T. Young, and R.D. Cardiff, Specific activation of the cellular Harvey-ras oncogene in dimethylbenz(a)anthracene-induced mouse mammary tumors, Mol. Cell. Biol. 6:4104 (1986).PubMedGoogle Scholar
  38. 38.
    P. J. Abbott and R. Saffhill, DNA synthesis with methylated poly(dC-dG) templates: evidence for a competitive nature to miscoding by 06 -methylguanine. Biochim. Biophys. Acta 562:51 (1979).PubMedGoogle Scholar
  39. 39.
    A. Dipple, M. Pigott, R.C. Moschel, and N. Costantino, Evidence that binding of 7,12-dimethylbenz(a)anthracene to DNA in mouse embryo cell cultures results in extensive substitution of both adenine and guanine residues, Cancer Res. 43:4132 (1983).PubMedGoogle Scholar
  40. 40.
    A. Balmain, M. Ramsden, G.T. Bowden, and J. Smith, Activation of the mouse cellular Harvey-ras gene in chemically-induced benign skin papillomas. Nature 307:658 (1984).PubMedCrossRefGoogle Scholar
  41. 41.
    M. Quintanilla, K. Brown, M. Ramsden, and A. Balmain, Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis, Nature 322:78 (1986).PubMedCrossRefGoogle Scholar
  42. 42.
    D. Bizub, A.W. Wood, and A.M. Skalka, Mutagenesis of the Ha-ras oncogene in mouse skin tumors induced by polycyclic aromatic hydrocarbons, Proc. Natl. Acad. Sci. USA 83:6048 (1986).PubMedCrossRefGoogle Scholar
  43. 43.
    H. Yamasaki, M. Hollstein, N. Martel, J.R.P. Cabrai, D. Galendo, and L. Tomatis, Transplacental induction of a specific mutation in fetal Ha-ras and its critical role in post-natal carcinogenesis, Int. J. Cancer 40:818 (1987).PubMedCrossRefGoogle Scholar
  44. 44.
    K. Brown, M. Quintanilla, M. Ramsden, I.B. Kerr, S. Young, and A. Baimain, v-ras genes from Harvey and BALB murine sarcoma viruses can act as initiators of two-stage mouse skin carcinogenesis, Cell 46:447 (1986).PubMedCrossRefGoogle Scholar
  45. 45.
    W. L. W. Hsiao, S. Gattoni-Celli, and I.B. Weinstein, Oncogene-induced transformation of C3H 10T 1/2 cells is enhanced by tumor promoters, Science 226:552 (1984).PubMedCrossRefGoogle Scholar
  46. 46.
    G. P. Dotto, L.F. Parada, and R.A. Weinberg, Specific growth response of ras-transformed embryo fibroblasts to tumor promoters, Nature 318:472 (1985).PubMedCrossRefGoogle Scholar
  47. 47.
    S. Rodenhuis, R.J.C. Slebos, A.J.M. Boot, S.G. Evers, W.J. Mooi, S.Sc. Wagenaan, P.Ch. van Bodegom, and J.L. Bos, Incidence and possible clinical significance of K-ras oncogene activation in adenocarcinoma of the human lung. Cancer Res. 48:5738 (1988).PubMedGoogle Scholar
  48. 48.
    L. J. van’t Veer, B.M.T. Burgering, R. Versteeg, A.J.M. Boot, D.J. Ruiter, S. Osanto, P.I. Schrier, and J.L. Bos, N-ras mutations in human cutaneous melanoma on sun-exposed body sites. Mol. Cell. Biol. in press (1989).Google Scholar
  49. 49.
    C. J. Farr, R.K. Saiki, H.A. Erlich, F. McCormick, and C.J. Marschall, Analysis of ras gene mutations in acute myeloid leukemia by Polymerase chain reaction and oligonucleotide probes, Proc. Natl. Acad. Sci. USA 85:1629 (1988).PubMedCrossRefGoogle Scholar
  50. 50.
    H. Hirai, Y. Kobayashi, H. Mano, K. Hagiwara, Y. Maru, M. Omine, H. Mizoguchi, J. Nishida, and F. Takaku, A point mutation at codon 13 of the N-ras oncogene in myelodysplastic syndrome, Nature 327:430 (1987).PubMedCrossRefGoogle Scholar
  51. 51.
    J. L. Bos, The ras gene family and human carcinogenesis, Mutat. Res. 195:255 (1988).PubMedGoogle Scholar
  52. 52.
    J. R. Harper, D.R. Roop, and S.H. Yuspa, Transfection of the EJ ras-Ha gene into keratinocytes derived from carcinogen-induced mouse papillomas causes malignant progression, Mol. Cell. Biol. 6:3144 (1986).PubMedGoogle Scholar
  53. 53.
    D.A. Greenhalgh, and S.H. Yuspa, Malignant conversion of murine squamous papilloma cell lines by transfection with the fos oncogene. Mol. Carcinogenesis 1:134 (1988).CrossRefGoogle Scholar
  54. 54.
    M. Hollstein and H. Yamasaki, Tumor promoter-mediated modulation of cell differentiation and communication: the phorbol ester-oncogene connection, in: “Tumor Cell Differentiation”, J. Aarbakke, P.K. Chiang, and H.P. Koeffler, eds., The Humana Press, Clifton, NJ (1987).Google Scholar
  55. 55.
    T. Curran and B.R. Jr Franza, Fos and jun: the AP-1 connection, Cell 55:395 (1988).PubMedCrossRefGoogle Scholar
  56. 56.
    W. W. Lamph, P. Wamsley, P Sassone-Corsi, and I.M. Verma, Induction of proto-oncogene jun/AP-1 by serum and TPA, Nature 334:629 (1988).PubMedCrossRefGoogle Scholar
  57. 57.
    T. J. Bos, D. Bohmann, H. Tsuchie, R. Tjian, and P.K. Vogt, v-jun encodes a nuclear protein with enhancer binding properties of AP-1, Cell 52:705 (1988).PubMedCrossRefGoogle Scholar
  58. 58.
    T. Kouzarides and E. Ziff, The role of the leucine zipper in the fos-jun interaction, Nature 336:646 (1988).PubMedCrossRefGoogle Scholar
  59. 59.
    P. Sassone-Corsi, J.C. Sisson, and I.M. Verma, Transcriptional autoregulation of the proto-oncogene fos. Nature 334:314 (1988).PubMedCrossRefGoogle Scholar
  60. 60.
    H. Yamasaki, Tumor promotion: from the view point of cell society, in: “Theories of Carcinogenesis”, O.H. Iversen, ed., Hemisphere Publishing Corp., Washington (1988).Google Scholar
  61. 61.
    M. Mesnil, D.J. Fitzgerald, and H. Yamasaki, Phenobarbital specifically reduces gap junction protein mRNA level in rat liver. Mol. Carcinogenesis 1:79 (1988).CrossRefGoogle Scholar
  62. 62.
    M. Bignami, S. Rosa, G. Falcone, F. Tato, F. Katoh, and H. Yamasaki, Specific viral oncogenes cause differential effects on cell-to-cell communication, relevant to the suppression of the transformed phenotype by normal cells. Mol. Carcinogenesis 1:67 (1988).CrossRefGoogle Scholar
  63. 63.
    T. Enomoto and H. Yamasaki, Phorbol ester-mediated inhibition of intercellular communication in BALB/c 3T3 cells: Relationship to enhancement of cell transformation, Cancer Res. 45:2681 (1985).PubMedGoogle Scholar
  64. 64.
    H. Yamasaki, T. Enomoto, Y. Shiba, Y. Kanno, and T. Kakunaga, Intercellular communication capacity as a possible determinant of transformation sensitivity of BALB/c 3T3 clonal cells. Cancer Res. 45:637 (1985).PubMedGoogle Scholar
  65. 65.
    H. R. Herschman and D.W. Brankow, Ultraviolet irradiation transforms C3H10T1/2 cells to a unique, suppressible phenotype, Science 234:1385 (1986).PubMedCrossRefGoogle Scholar
  66. 66.
    T. Enomoto and H. Yamasaki, Lack of intercellular communication between chemically transformed and surrounding non-transformed BALB/c 3T3 cells, Cancer Res. 44:5200 (1984).PubMedGoogle Scholar
  67. 67.
    H. Yamasaki, M. Hollstein, M. Mesnil, N. Martel, and A.M. Aguelon, Selective lack of intercellular communication between transformed and non-transformed cells as a common property for chemical and oncogene transformation of BALB/c 3T3 cells, Cancer Res. 47:5658 (1987).PubMedGoogle Scholar
  68. 68.
    M. Mesnil and H. Yamasaki, Selective gap junctional communication capacity of transformed and nontransformed rat-liver epithelial cell lines, Carcinogenesis, 9:1499 (1988).PubMedCrossRefGoogle Scholar
  69. 69.
    R. C. Klann, D.J. Fitzgerald, C. Piccoli, T.J. Slaga, and H. Yamasaki, Characterization of gap-junctional intercellular communication in Sencar mouse epidermal cell lines, Cancer Res. 49:699 (1989).PubMedGoogle Scholar
  70. 70.
    H. Yamasaki and F. Katoh, Further evidence for the involvement of gap junctional intercellular communication in induction and maintenance of transformed foci in BALB/c 3T3 cells. Cancer Res. 48:3490 (1988).PubMedGoogle Scholar
  71. 71.
    K. H. Kraemer, J.J. DiGiovanna, A.N. Moshell, R.E. Tarone, and G.L. Peck, Prevention of skin cancer in Xeroderma pigmentosum with the use of oral isotretinoin, N. Engl. J. Med. 318:1633 (1988).PubMedCrossRefGoogle Scholar
  72. 72.
    L. Prutkin, Mucous metaplasia and gap junctions in the vitamin A acid-treated skin tumor keratoacanthoma, Cancer Res. 35:364 (1975).PubMedGoogle Scholar
  73. 73.
    P. M. Elias, S. Grayson, T.M. Caldwell, and N.S. McNutt, Gap junction proliferation in retinoic acid treated human basal cell carcinoma. Lab. Invest. 42:469 (1980).PubMedGoogle Scholar
  74. 74.
    H. Yamasaki, M. Hollstein, J.R.P. Cabrai, and L. Tomatis, Role of oncogene activation during transplacental initiation and postnatal promotion of mouse skin tumors, in: “Perinatal and Multigeneration Carcinogenesis”, N.P. Napalkov, J.M. Rice, L. Tomatis, and H. Yamasaki, eds., IARC Scientific Publications No. 96, IARC, Lyon (1989) in press.Google Scholar
  75. 75.
    H. Yamasaki, Role of gap-junctional intercellular communication in malignant cell transformation, in: “Gap Junctions” (Modern Cell Biology, Vol. 7), E.L. Hertzberg and R.G. Johnson, eds., Alan R. Liss Inc., New York (1988).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Hiroshi Yamasaki
    • 1
  1. 1.International Agency for Research on CancerLyonFrance

Personalised recommendations