Advertisement

Neurochemical Consequences of Stress

Intrusion of Nonassociative Factors in Behavioral Analysis
  • Hymie Anisman

Abstract

Physical or psychological insults or the threat of such insults will instigate a series of behavioral changes that can be viewed as adaptive alterations to meet environmental demands. That is, these behavioral acts minimize the impact of the stress or promote either escape or avoidance from the aversive stimuli. Concurrently, several physiological changes occur, including neurochemical, hormonal, and immunologic alterations, that likely have adaptive significance (see Amkraut & Solomon, 1975; Anisman, Kokkinidis, & Sklar, 1981a; Miline, 1980; Sklar & Anis-man, 1981; Yuwiler, 1976). For example, the physiological alterations may reduce the aversiveness of the stimuli (Chance, White, Krynock, & Rosecrans, 1977, 1978; Maier and Jackson, 1979), blunt the affect associated with the stress (Abramson & Sackeim, 1977), prevent or minimize physical pathologies or illness (see Sklar & Anisman, 1981), prepare the organism for further encounters with stress (Anisman & Sklar, 1979), and they may be instrumental in eliciting the behavioral sequence culminating in evasion of the stressful stimuli (Anisman, Kokkinidis, & Sklar, 1981b).

Keywords

Avoidance Behavior Passive Avoidance Avoidance Task Inescapable Shock Avoidance Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson, L. Y., & Sackeim, H. A. A paradox in depression: Uncontrollability and self-blame. Psychological Bulletin, 1977, 84, 838–851.Google Scholar
  2. Amir, S., & Amit, Z. Endogenous opioid legands may mediate stress-induced changes in the affective properties of pain related behaviors in rats. Life Sciences, 1978, 25, 1143–1152.Google Scholar
  3. Amkraut, A., & Solomon, G. F. From the symbolic stimulus to the pathophysiologic response: Immune mechanisms. International Journal of Psychiatry in Medicine, 1975, 5, 541–563.Google Scholar
  4. Anisman, H. Cholinergic mechanisms and alterations in behavioral suppression as factors producing time dependent changes in avoidance performance. Journal of Comparative and Physiological Psychology, 1973, 83, 465–477.Google Scholar
  5. Anisman, H. Time-dependent variations in aversively motivated behaviors: Nonassociative effects of cholinergic and catecholaminergic activity. Psychological Review, 1975, 82, 359–385.Google Scholar
  6. Anisman, H. Time-dependent changes in activity, reactivity and responsivity during shock: Effects of cholinergic and catecholaminergic manipulations. Behavioral Biology, 1977, 21, 1–31.Google Scholar
  7. Anisman, H. Neurochemical changes elicited by stress: Behavioral correlates. In H. Anis-man & G. Bignami (Eds.), Psychopharmacology of aversively motivated behavior. New York: Plenum Press, 1978.Google Scholar
  8. Anisman, H., & Bignami, G. A comparative neurochemical, pharmacological, and func-tional analysis of aversively motivated behaviors: Caveats and general considerations. In H. Anisman & G. Bignami (Eds.), Psychopharmacology of aversively motivated behavior. New York: Plenum Press, 1978.Google Scholar
  9. Anisman, H., & Sklar, L. S. Catecholamine depletion upon reexposure to stress: Mediation of the escape deficits produced by inescapable shock. Journal of Comparative and Physiological Psychology, 1979, 93, 610–625.Google Scholar
  10. Anisman, H., & Sklar, L. S. Social housing conditions influence escape deficits produced by uncontrollable stress: Assessment of the contribution of norepinephrine. Behavioral and Neural Biology, 1981, 32, 406–427.Google Scholar
  11. Anisman, H., & Wahlsten, D. Response initiation and directionality as factors influencing avoidance performance. Journal of Comparative and Physiological Psychology, 1974, 87, 1119–1128.Google Scholar
  12. Anisman, H., & Waller, T. G. Facilitative and disruptive effect of prior exposure to shock on subsequent avoidance performance. Journal of Comparative and Physiological Psychology, 1972, 78, 113–122.Google Scholar
  13. Anisman, H., & Waller, T. G. Effects of inescapable shock on subsequent avoidance performance: Role of response repertoire changes. Behavioral Biology, 1973, 9, 331–355.Google Scholar
  14. Anisman, H., deCatanzaro, D., & Remington, G. Escape performance following exposure to inescapable shock: Deficits in motor response maintenance. Journal of Experimental Psychology: Animal Behavior Processes, 1978, 4, 197–218.Google Scholar
  15. Anisman, H., Grimmer, L., Irwin, J., Remington, G., & Sklar, L. S. Escape performance after inescapable shock in selectively bred lines of mice: Response maintenance and catecholamine activity. Journal of Comparative and Physiological Psychology, 1979, 93, 229–241.Google Scholar
  16. Anisman, H., Remington, G., & Sklar, L. S. Effects of inescapable shock on subsequent escape performance: Catecholaminergic and cholinergic mediation of response initiation and maintenance. Psychopharmacology, 1979, 61, 107–124.Google Scholar
  17. Anisman, H., Kokkinidis, L., & Sklar, L. S. Contribution of neurochemical change to stress induced behavioral deficits. In S. J. Cooper (Ed.), Theory in psychopharmacology (Vol. 1). New York: Academic Press, 1981 (a)Google Scholar
  18. Anisman, H., Kokkinidis, L., & Sklar, L. S. Neurochemical consequences of stress: Contributions of adaptive processes. In S. Burchfield (Ed.), Physiological and psychological interactions in response to stress. New York: Hemisphere, 1981.Google Scholar
  19. Anisman, H., Pizzino, A., & Sklar, L. S. Coping with stress, norepinephrine depletion and escape performance. Brain Research, 1980, 191, 583–588.Google Scholar
  20. Anisman, H., Suissa, A., & Sklar, L. S. Escape deficits induced by uncontrollable stress: Antagonism by dopamine and norepinephrine agonists. Behavior and Neural Biology, 1980, 28, 34–47.Google Scholar
  21. Anisman, H., Glazier, S., & Sklar, L. S. Cholinergic influences on escape deficits produced by uncontrollable stress. Psychopharmacology, 1981, 74, 81–87.Google Scholar
  22. Aprison, M. H., & Hingtgen, J. N. Evidence of a central cholinergic mechanism functioning during drug-induced excitation in avoidance behavior. In E. Heilbronn & A. Winter (Eds.), Drugs and cholinergic mechanisms in the CNS. Stockholm: Forsvarets Forskning-Sansalt, 1970.Google Scholar
  23. Aprison, M. H., Kariya, T., Hingtgen, J. N., & Toni, M. Neurochemical correlates of behavior: Changes in acetylcholine, norepinephrine and 5-hydroxytryptamine concentrations in several discrete brain areas of the rat during behavioral excitation. Journal of Neurochemistry, 1968, 15, 1131–1139.Google Scholar
  24. Ashe, V. M., & McCain, G. Comparison of one-way and shuttle-avoidance performance of gerbils and rats. Journal of Comparative and Physiological Psychology, 1972, 80, 29 1296.Google Scholar
  25. Barrett, R. J., Leith, N. J., & Ray, O. S. Permanent facilitation of avoidance behavior of D-amphetamine and scopolamine. Psychopharmacologia, 1972, 25, 321–331.Google Scholar
  26. Barrett, R. J., Leith, N. J., & Ray, O. S. An analysis of the facilitation of avoidance acquisition produced by d-amphetamine and scopolamine. Behavioral Biology, 1974, 11, 189–205.Google Scholar
  27. Barry, H., & Buckley, J. P. Drug effect on animal performance and the stress syndrome. Journal of Pharmacological Science, 1966, 55, 1159–1183.Google Scholar
  28. Bignami, G. Nonassociative explanations of behavioural changes induced by central cholinergic drugs. Acta Neurobiologiae Experimentalis, 1976, 36, 5–90.Google Scholar
  29. Bignami, G., & Michalek, H. Cholinergic mechanisms and aversively motivated behaviors. In H. Anisman & G. Bignami (Eds.), Psychopharmacology of aversively motivated behavior. New York: Plenum Press, 1978.Google Scholar
  30. Blanc, G., Hervé, D., Simon, H., Lisoprawski, A., Glowinski, J., & Tassin, J. P. Response to stress of mesocortical-frontal dopaminergic neurones in rats after long term isolation. Nature, 1980, 284, 265–267.Google Scholar
  31. Bodnar, R. J., Kelly, D. D., Brutus, M., & Glusman, M. Stress induced analgesia: Neural and hormonal determinants. Neuroscience and Biobehavioral Reviews, 1980, 4, 87–100.Google Scholar
  32. Bolles, R. C. Species-specific defense reactions and avoidance learning. Psychological Review, 1970, 77, 32–48.Google Scholar
  33. Bolles, R. C. Species-specific defense reactions. In F. R. Brush (Ed.), Aversive conditioning and learning. New York: Academic Press, 1971.Google Scholar
  34. Bracewell, R. J., & Black, A. H. The effects of restraint and noncontingent preshock on subsequent escape learning in the rat. Learning Motivation. 1974, 5, 53–69.Google Scholar
  35. Breese, G. R., & Cooper, B. R. Behavioral and biochemical interactions of 5, 7-dihydroxytryptamine with various drugs when administered intracisternally to adult and developing rats. Brain Research, 1975, 98, 517–527.Google Scholar
  36. Breese, G. R., Cooper, B. R., Grant, L. D., & Smith, R. D. Biochemical and behavioral alterations following 5, 6-dihyhydroxytryptamine administered into brain. Neuropharmacology, 1974, 13, 177–187.Google Scholar
  37. Brush, F. R. Retention of aversively motivated behavior. In F. R. Brush (Ed.), Aversive conditioning and learning. New York: Academic Press, 1971.Google Scholar
  38. Campbell, B. A., & Spear, N. E. Ontogeny of memory. Psychological Review, 1972, 79, 215–236.Google Scholar
  39. Cassens, G., Roffman, M., Kuruc, A., Orsulak, P. J., & Schildkraut, J. J. Alterations in brain norepinephrine metabolism induced by environmental stimuli previously paired with inescapable shock. Science, 1980, 209, 1138–1140.Google Scholar
  40. Chance, W. T., & Rosecrans, J. A. Lack of cross-tolerance between morphine and auto-analgesia. Pharmacology, Biochemistry and Behavior,1979, 11,639–642. (a)Google Scholar
  41. Chance, W. T., & Rosecrans, J. A. Lack of effect of naloxone on autoanalgesia. Pharmacol-ogy, Biochemistry and Behavior,1979, 11,643–646. (b)Google Scholar
  42. Chance, W. T., White, A. C., Krynock, G. M., & Rosecrans, J. A. Centrifugal control of nociception: Autoanalgesic mechanisms. Proceedings of the Society for Neurosciences, 1977, 3, 479. (Abstract)Google Scholar
  43. Chance, W. T., White, A. C., Krynock, G. M., & Rosecrans, J. A. Conditional fear-induced autinociception and decreased binding of [3H] N-Leu-enkephalin to rat brain. Brain Research, 1978, 141, 371–374.Google Scholar
  44. Cherek, D. R., Lane, J. D., Freeman, M. E., & Smith, J. E. Receptor changes following shock avoidance. Society of Neuroscience Abstracts, 1980, 6, 543.Google Scholar
  45. Cooper, B. R., Breese, G. R., Grant, L. D., & Howard, J. L. Effects of 6-hydroxydopamine treatments on active avoidance responding: Evidence for involvement of brain dopamine. Journal of Pharmacological Experimental Therapeutics, 1973, 185, 358–370.Google Scholar
  46. Davidson, A. B., & Weidley, E. Differential effects of neuroleptic and other psychotropic agents on acquisition of avoidance in rats. Life Sciences, 1976, 18, 1279–1284.Google Scholar
  47. Deutsch, J. A. The cholinergic synapse and the site of memory. Science, 1971, 174, 788–794.Google Scholar
  48. DeVries, G. H., Chance, W. T., Payne, W. R., & Rosecrans, J. A. Effect of autoanalgesia on CNS enkephalin receptors. Pharmacology, Biochemistry and Behavior, 1979, 11, 741–744Google Scholar
  49. Dismukes, R. K., & Rake, A. V. Involvement of biogenic amines in memory formation. Psychopharmacologia, 1972, 23, 17–25.Google Scholar
  50. Ebel, A., Hermetet, J. C., & Mandel, P. Comparative study of acetycholinesterase and choline acetyltransferase enzyme activity in brain of DBA and C57 mice. Nature, 1973, 242, 56–58.Google Scholar
  51. Fibiger, H. C., Phillips, A. G., & Zis, A. P. Deficits in instrumental responding after 6hydroxydopamine lesions of the nigro-neostriatal dopaminergic projection. Pharmacology, Biochemistry and Behavior, 1974, 2, 87.Google Scholar
  52. Fibiger, H. C., Zis, A. P., & Phillips, G. Haloperidol-induced disruption of conditioned avoidance responding: Attenuation by prior training or by anticholinergic drugs. European Journal of Pharmacology, 1975, 80, 309–314.Google Scholar
  53. Finch, C. E. Catecholamine metabolism in the brains of ageing male mice. Brain Research, 1973, 52, 261–276.Google Scholar
  54. Frontali, M., Amorico, L., de Acetis, L., & Bignami, G. A pharmacological analysis of processes underlying differential responding: A review and further experiments with scopolamine, amphetamine, lysergic acid diethylamide (LSD-25), chlordiazepoxide, physostigmine and chlorpromazine. Behavioral Biology, 1976, 18, 1–74.Google Scholar
  55. Fulginiti, S., Molina, J. A., & Orsingher, O. A. Inhibition of catecholamine biosynthesis and memory processes. Psychopharmacology, 1976, 51, 65–69.Google Scholar
  56. Geller, I. Use of approach-avoidance behavior (conflict) for evaluating depressant drugs. In J. H. Nodine & J. H. Moyer (Eds.), Psychosomatic Medicine. Philadelphia: Lea and Fibiger, 1962, 267–274.Google Scholar
  57. George, G., & Mellanby, J. A further study on the effect of physostigmine on memory in rats. Brain Research, 1974, 81 (1), 133–144.Google Scholar
  58. Glazer, H. I., & Weiss, J. M. Long-term and transitory interference effects. Journal of Experimental Psychology: Animal Behavior Processes, 1976, 2, 191–201.Google Scholar
  59. Glazer, H. I., & Weiss, J. M. Long term interference effect: An alternative to “Learned Helplessness.” Journal of Experimental Psychology: Animal Behavior Processes, 1976, 2, 202–213. (b)Google Scholar
  60. Grossen, N. E., & Kelley, M. J. Species-specific behavior and acquisition of avoidance behavior in rats. Journal of Comparative and Physiological Psychology, 1972, 81, 307–310.Google Scholar
  61. Hendley, E. D., Moisset, B., & Welch, B. C. Catecholamine uptake in cerebral cortex: Adaptive change induced by fighting. Science, 1973, 80, 1050–1052.Google Scholar
  62. Herrnstein, R. J. Method and theory in the study of avoidance. Psychological Review, 1969, 76, 49–69.Google Scholar
  63. Hingtgen, J. N., Smith, J. E., Shea, P. A., Aprison, M. H., & Gaff, T. M. Cholinergic changes during conditioned suppression in rats. Science, 1976, 193, 332–334.Google Scholar
  64. Huppert, F. A., & Iversen, S. D. Response suppression in rats: A comparison of response-contingent and noncontingent punishment and the effect of the minor tranquilizer, chlordiazepoxide. Psychopharmacologia, 1975, 44, 67–75.Google Scholar
  65. Ingenito, A. J., & Bonnycastle, D. D. The effect of exposure to heat and cold upon rat brain catecholamine and 5-hydroxytryptamine levels. Canadian Journal of Physiological Pharmacology, 1967, 45, 733–743.Google Scholar
  66. Irwin, J., Suissa, A., & Anisman, H. Differential effects of inescapable shock on escape performance and discrimination learning in a water escape task. Journal of Experimental Psychology: Animal Behavior Processes, 1980, 6, 21–40.Google Scholar
  67. Iversen, S. D. Brain dopamine systems and behavior. In L. L. Iversen, S. D. Iversen, & S. H. Snyder (Eds.), Handbook of psychopharmacology (Vol. 8 ). New York: Plenum Press, 1977.Google Scholar
  68. Izquierdo, I. A pharmacological separation of buzzer-shock pairing and of the shuttle-shock contingency as factors in the elicitation of shuttle responses to a buzzer in rats. Behavioral Biology, 1976, 18, 75–88.Google Scholar
  69. Izquierdo, I., & Elisabetsky, E. Four memory channels in the rat brain. Psychopharmacology, 1978, 57, 215–222.Google Scholar
  70. Izquierdo, I., Beamish, D. G., & Anisman, H. Effect of an inhibitor of dopamine-Betahydroxylase on the acquisition and retention of four different avoidance tasks in mice. Psychopharmacology, 1979, 63, 173–178.Google Scholar
  71. Jackson, R. L., Maier, S. F., & Coon, D. J. Long-term analgesic effects of inescapable shock and learned helplessness. Science, 1979, 206, 91–93.Google Scholar
  72. Jackson, R. L., Alexander, R. H., & Maier, S. F. Learned helplessness, inactivity and associative deficits: Effects of inescapable shock on response choice escape learning. Journal of Experimental Psychology: Animal Behavior Processes, 1980, 6, 1–20.Google Scholar
  73. Karczmar, A. G., Scudder, C. L., & Richardson, D. L. Interdisciplinary approach to the study of behavior in related mice types. In S. Ehrenpreis & I. J. Kopin (Eds.), Chemical approaches to brain function. New York: Academic Press, 1973.Google Scholar
  74. Katzev, R. D., & Mills, S. K. Strain differences in avoidance conditioning as a function of the classical CS-US contingency. Journal of Comparative and Physiological Psychology, 1974, 87, 661–671.Google Scholar
  75. Kelly, P. H. Drug-induced motor behavior. In L. L. Iversen, S. D. Iversen, & S. H. Snyder (Eds.), Handbook of psychopharmacology (Vol. 8 ). New York: Plenum Press, 1977.Google Scholar
  76. Klein, S. B., & Spear, N. E. Forgetting by the rat after intermediate intervals (Kamin effect) as retrieval failure. Journal of Comparative and Physiological Psychology,1970, 71,165–170. (a)Google Scholar
  77. Klein, S. B., & Spear, N. E. Reactivation of avoidance learning memory in the rat after intermediate retention intervals. Journal of Comparative and Physiological Psychology, 1970, 72, 498–504.Google Scholar
  78. Kobayashi, R. M., Palkovits, M., Kizer, J. S., Jacobowitz, D. M., & Kopin, I. J. Selective alterations of catecholamines and tyrosine hydroxylase activity in the hypothalamus following acute and chronic stress. In E. Usdin, R. Kvetnansky, & I. J. Kopin (Eds.), Catecholamines and stress. Oxford: Pergamon Press, 1976.Google Scholar
  79. Korf, J. Locus coeruleus, noradrenaline metabolism and stress. In E. Usdin, R. Kvetnansky, & I. J. Kopin (Eds.), Catecholamines and stress. Oxford: Pergamon Press, 1976.Google Scholar
  80. Kvetnansky, R., Mitro, A., Palkovits, M., Brownstein, M., Torda, T., Vigas, M., & Mikulaj, L. Catecholamines in individual hypothalamic nuclei in stressed rats. In E. Usdin, R. Kvetnansky, & I. J. Kopin (Eds.), Catecholamines and stress. Oxford: Pergamon Press, 1976.Google Scholar
  81. Kvetnansky, R., Kopin, I. J., & Saavedra, J. M. Changes in epinephrine in individual hypothalamic nuclei after immobilization stress. Brain Research, 1978, 155 (2), 387–390.Google Scholar
  82. Lal, H., Spaulding, T., & Fielding, S. Swim-stress induced analgesia and lack of its naloxone antagonism. Communications in Psychopharmacology, 1978, 2, 263–266.Google Scholar
  83. Lavielle, S., Tassin, J. P., Thierry, A. M., Blanc, G., Hervé, D., Barthelemy, C., & Glowinski, J. Blockade of benzodiazepines of the selective high increase in dopamine turnover induced by stress in mesocortical dopaminergic neurons of the rat. Brain Research, 1978, 168, 585–594.Google Scholar
  84. Lenard, L. G., & Beer, B. 6-hydroxydopamine and avoidance: Possible role of response suppression. Pharmacology, Biochemistry and Behavior, 1975, 3, 873–878. (a)Google Scholar
  85. Lenard, L. G., & Beer, B. Modification avoidance behavior in 6-hydroxydopamine-treated rats by stimulation of central noradrenergic and dopaminergic receptors. Pharmacology, Biochemistry and Behavior, 1975, 3, 887–893. (b)Google Scholar
  86. Lenard, L. G., & Beer, B. Relationship of brain levels of norepinephrine and dopamine to avoidance behavior in rats after intraventricular administration of 6-hydroxydopamine. Pharmacology, Biochemistry and Behavior, 1975, 3, 895–899. (c)Google Scholar
  87. Lorens, S. A. Raphe lesions in cats: Forebrain serotonin avoidance behavior. Pharmacology, Biochemistry and Behavior, 1973, 1, 487–490.Google Scholar
  88. Lorens, S. A., Gulberg, H. C., Hole, K., Kolater, C., & Srebro, B. Activity, avoidance learning and regional 5-hydroxytryptamine following intra-brain stem 5, 7-dihydroxytryptamine and electrolytic midbrain raphe lesions in rats. Brain Research, 1976, 108, 97–114.Google Scholar
  89. Mackintosh, N. J. Stimulus selection: Learning to ignore stimuli that predict no change in reinforcement. In R. A. Hinde & J. S. Hinde (Eds.), Constraints on learning: Limitations and predispositions. New York: Academic Press, 1973.Google Scholar
  90. Madden, J., IV, Akil, H., Patrick, R. L., & Barchas, J. D. Stress-induced parallel changes in central opioid levels and pain responsiveness in the rat. Nature, 1977, 265, 358–360.Google Scholar
  91. Mah, C., Suissa, A., & Anisman, H. Dissociation of antinociception and escape deficits induced by stress in mice. Journal of Comparative and Physiological Psychology, 1980, 94, 1160–1171.Google Scholar
  92. Maier, S. F., & Jackson, R. L. Learned helplessness: All of us were right (and wrong): Inescapable shock has multiple effects. In G. Bower (Ed.), The psychology of learning and motivation (Vol. 13 ). New York: Academic Press, 1979.Google Scholar
  93. Maier, S. F., & Seligman, M. E. P. Learned helplessness: Theory and evidence. Journal of Experimental Psychology: General, 1976, 105, 3–46.Google Scholar
  94. Maier, S. F., & Testa, T. J. Failure to learn to escape by rats previously exposed to inescapable shock is partly produced by associative interference. Journal of Comparative and Physiological Psychology, 1975, 88, 554.Google Scholar
  95. Maier, S. F., Albin, R. W., & Testa, T. J. Failure to learn to escape in rats previously exposed to inescapable shock depends on nature of escape response. Journal of Comparative and Physiological Psychology, 1973, 85, 581–592.Google Scholar
  96. Maynert, E. W., & Levi, R. Stress-induced release of brain nerepinephrine and its inhibition by drugs. Journal of Pharmacology and Experimental Therapeutics, 1964, 143, 90–95.Google Scholar
  97. McAllister, W. R., & McAllister, D. E. Behavioral measurement of conditioned fear. In F. R. Brush (Ed.), Aversive conditioning and learning. New York: Academic Press, 1971.Google Scholar
  98. McGaugh, J. L. Neurobiological aspects of memory. In R. G. Grenell & S. Gabay (Eds.), Biological foundations of psychiatry (Vol. 1 ). New York: Raven Press, 1976.Google Scholar
  99. McMillan, D. E., & Leander, J. R. Drugs and punished responding vs. effects of drugs on responding suppressed by response-dependent and response-independent electric shock. Archives of International Pharmacodynamics and Therapeutics, 1975, 213, 22–27.Google Scholar
  100. Meyers, B. Some effects of scopolamine on a passive avoidance response in rats. Psychopharmacologia, 1965, 8, 111–119.Google Scholar
  101. Miczek, K. A. Effects of scopolamine, amphetamine and chlordiazepoxide on punishment. Psychopharmacologia, 1973, 28, 373–389.Google Scholar
  102. Miczek, K. A. Effects of scopolamine, amphetamine and benzodiazepines on conditioned suppression. Pharmacology, Biochemistry and Behavior, 1973, 1, 401–411. (b)Google Scholar
  103. Wine, R. The role of the pineal gland in stress. Journal of Neural Transmission, 1980, 47, 191–220.Google Scholar
  104. Modigh, K. Influence of social stress on brain catecholamine mechanisms. In E. Usdin, R. Kvetnansky, & I. J. Kopin (Eds.), Catecholamines and stress. Oxford: Pergamon Press, 1976.Google Scholar
  105. Neill, D. B., Boggan, W. O., & Grossman, S. P. Behavioral effects of amphetamine in rats with lesions in the corpus striatum. Journal of Comparative and Physiological Psychology, 1974, 86, 1019–1030.Google Scholar
  106. Nishikawa, T., Kajiwara, Y., Kono, Y., Sano, T., Nagaski, N., Tanaka, M., & Noda, Y. Isolation-induced general behavioral changes and brain monoamine levels in rat. Kurume Medical Journal, 1974, 21, 117–121.Google Scholar
  107. Palkovits, M., Brownstein, M., Kizer, J. S., Saaverda, J. M., & Kopin, I. J. Affect of stress on serotonin and tryptophan hydroxylase activity of brain nuclei. In E. Usdin, R. Kvetnansky, & I. J. Kopin (Eds.), Catecholamine and stress. Oxford: Pergamon Press, 1976.Google Scholar
  108. Peters, D. A. V., Anisman, H., & Pappas, B. A. Monoamines and aversively motivated behaviors. In H. Anisman & G. Bignami (Eds.), Psychopharmacology of aversively motivated behavior. New York: Plenum Press, 1978.Google Scholar
  109. Pinel, J. P. J., & Mucha, R. F. Activity and reactivity in rats at various intervals after footshock. Canadian Journal of Psychology, 1973, 27, 112–118.Google Scholar
  110. Pinel, J. P. J., & Treit, D. Burying as a defensive response in rats. Journal of Compartative and Physiological Psychology, 1978, 92, 708–712.Google Scholar
  111. Rainbow, T. C., Adler, J. E., & Flexner, L. B. Comparison in mice of the amnesic effects of cyclohexamide and 6-hydroxydopamine in a one-trial passive avoidance task. Pharmacology, Biochemistry and Behavior, 1976, 41, 347–349.Google Scholar
  112. Ray, O. S., & Barrett, R. J. Behavioral, pharmacological, and biochemical analysis of genetic differences in rats. Behavioral Biology, 1975, 15, 391–417.Google Scholar
  113. Rescorla, R. A., & Solomon, R. L. Two process learning theory: Relationships betweenGoogle Scholar
  114. Pavlovian and instrumental learning. Psychological Review, 1967, 74, 151–182. Ritter, S., & Pelzer, N. L. Magnitude of stress-induced brain norepinephrine depletion varies with age. Brain Research, 1978, 152, 170–175.Google Scholar
  115. Rosic, N., & Bignami, G. Depression of two-way avoidance learning and enhancement of passive avoidance learning by small doses of physostigmine. Neuropharmacology, 1970, 9, 311–316.Google Scholar
  116. Rosic, N., & Bignami, G. Scopolamine effects on go-no go avoidance discriminations: Influence of stimulus factors and primacy training. Psychopharmacologia, 1970, 17, 203–215.Google Scholar
  117. Rossier, J., French, E. D., River, C., Ling, N., Guillemin, R., & Bloom, F. E. Foot-shock induced stress increases B-endorphine levels in blood but not brain. Nature, 1977, 270, 618–6620.Google Scholar
  118. Rossier, J., Guillemin, R., & Bloom, F. E. Foot-shock induced, stress decreases Leusenkephalin immunoreactivity in rat hypothalamus. European Journal of Pharmacology, 1978, 48, 465–466.Google Scholar
  119. Saito, H., Morita, A., Miyazaki, I., & Takagi, K. Comparison of the effects of various stresses on biogenic amines in the central nervous system and animal symptoms. In E. Usdin, R. Kvetnansky, & I. J. Kopin (Eds.), Catecholamines and stress. Oxford: Pergamon Press, 1976.Google Scholar
  120. Schmidt, D. E., Cooper, D. O., & Barrett, R. J. Strain specific alterations in hippocampal cholinergic function following acute foot-shock. Pharmacology, Biochemistry and Behavior, 1980, 12, 277–280.Google Scholar
  121. Seligman, M. E. P. On the generality of the laws of learning. Psychological Review, 1970, 77, 406–418.Google Scholar
  122. Seligman, M. E. P., Maier, S. F., & Solomon, R. L. Unpredictable and uncontrollable aversive events. In F. R. Brush (Ed.), Aversive conditioning and learning. New York: Academic Press, 1971.Google Scholar
  123. Shettleworth, S. J. Constraints on learning. In D. S. Lehrman, R. A. Hinde, & E. Shaw. Advances in the study of behavior (Vol. 4 ). New York: Academic Press, 1972.Google Scholar
  124. Shurman, A. J., & Katzev, R. D. Escape/avoidance responding in rats depends on strain and number of inescapable preshocks. Journal of Comparative and Physiological Psychology, 1975, 88, 548–553.Google Scholar
  125. Signorelli, A. Influence of physostigmine upon consolidation of memory in mice. Journal of Comparative and Physiological Psychology, 1976, 90, 658–664.Google Scholar
  126. Sklar, L. S., & Anisman, H. Contributions of stress and coping to cancer development and growth. In K. Bammer & B. H. Newberry (Eds.), Stress and cancer. Toronto: C. J. Hogrefe, 1981.Google Scholar
  127. Steranka, L. R., & Barrett, R. J. Facilitation of avoidance acquisition by lesion of the median raphé nucleus: Evidence for serotonin as a mediator of shock-induced suppression. Behavioral Biology, 1974, 11, 205–213.Google Scholar
  128. Stolk, J. M., Conner, R. L., & Barchas, J. D. Social environment and brain biogenic amine metabolism in rats. Journal of Comparative and Physiological Psychology, 1974, 87, 203–207.Google Scholar
  129. Stolle, J. M., Conner, R. L., Levine, S., & Barchas, J. P. Brain norepinephrine metabolism and shock induced fighting behavior in rats: Differential effects of shock and fighting on the neurochemical response to a common footshock stimulus. Journal of Pharmacology and Experimental Therapeutics, 1974, 190, 193–209.Google Scholar
  130. Stone, E. A. Stress and catecholomines. In A. J. Friedhoff (Ed.), Catecholamines and behavior. Vol. 2. Neuropsychopharmacology. New York: Plenum Press, 1975.Google Scholar
  131. Stone, E. A. Reduction by stress of norepinephrine-stimulated accumulation of cyclic AMP in rat cerebral cortex. Journal of Neurochemistry, 1979, 32, 1335–1337.Google Scholar
  132. Stone, E. A. Subsensitivity to norepinephrine as a link between adaptation to stress and antidepressant therapy: An hypothesis. Research Communications in Psychology, Psychiatry and Behavior, 1979, 4, 241–255. (b)Google Scholar
  133. Suits, E., & Isaacson, R. L. The effects of scopolamine hydrobromide on one-way and two-way avoidance learning in rats. International Journal of Neuropharmacology, 1968, 7, 441–446.Google Scholar
  134. Testa, T. J. Causal relationships and the acquisition of avoidance responses. Psychological Review, 1974, 81, 491–505.Google Scholar
  135. Thierry, A. M. Effects of stress on the metabolism of serotonin and norepinephrine in the central nervous system of the rat. In S. Nemeth (Ed.), Hormones, metabolism and stress: Recent progress and perspectives. Bratislava: Publishing House of the Slovak Academy of Sciences, 1973.Google Scholar
  136. Thierry, A. M., Fekete, M., & Glowinski, J. Effects of stress on the metabolism of nor-adrenaline, dopamine and serotonin (5-HT) in the central nervous system of the rat: Modifications of serotonin metabolism. European Journal of Pharmacology, 1968, 4, 384–389.Google Scholar
  137. Thierry, A. M., Blanc, G., & Glowinski, J. Preferential utilization of newly synthesized norepinephrine in the brain stem of stressed rats. European Journal of Pharmacology, 1970, 10, 139.Google Scholar
  138. Thierry, A. M., Tassin, J. P., Blanc, G., & Glowinski, J. Selective activation of the mesocortical DA system by stress. Nature, 1976, 263, 242–263.Google Scholar
  139. Thoa, N. B., Tizabi, Y., & Jacobowitz, D. M. The effect of isolation on catecholamine concentration and turnover in discrete areas of the rat brain. Brain Research, 1977, 131, 259–269.Google Scholar
  140. Thoenen, H. Induction of tyrosine hydroxylase in peripheral and central adrenergic neurons of cold exposure. Nature, 1970, 228, 861–862.Google Scholar
  141. Wahlsten, D. Genetic experiments with animal learning: A critical review. Behavioral Biology 1972, 7 143–182. (a)Google Scholar
  142. Wahlsten, D. Phenotypic and genetic relations between initial response to electric shock and rate of avoidance learning in mice. Behavior Genetics 1972, 2 211–240. (b)Google Scholar
  143. Wahlsten, D. Behavior genetics and animal learning. In H. Anisman & G. Bignami (Eds.), Psychopharmacology of aversively motivated behavior. New York: Plenum Press, 1978.Google Scholar
  144. Weiss, J. M., & Glazer, H. I. Effects of acute exposure to stressors on subsequent avoidance-escape behavior. Psychosomatic Medicine, 1975, 37, 499–521.Google Scholar
  145. Weiss, J. M., Glazer, H. I., Pohorecky, L. A., Brick, J., & Miller, N. E. Effects of chronic exposure to stressors on avoidance-escape behavior and on brain norepinephrine. Psychosomatic Medicine, 1975, 37, 522–534.Google Scholar
  146. Weiss, J. M., Glazer, H. I., & Pohorecky, L. A. Coping behavior and neurochemical changes: An alternative explanation for the original “Learned Helplessness” experiments. In G. Serban & A. Kling (Eds.), Animal models in human psychobiology. New York: Plenum Press, 1976.Google Scholar
  147. Weiss, J. M., Pohorecky, L. A., Salman, S., & Gruenthal, M. Attenuation of gastric lesions by psychological aspects of aggression in rats. Journal of Comparative and Physiological Psychology, 1976, 90, 252–259.Google Scholar
  148. Weiss, J. M., Glazer, H. I., Pohorecky, L. A., Bailey, W. H., & Schneider, L. H. Coping behavior and stress-induced behavioral depression: Studies of the role of brain catecholamines. In R. A. Depue (Ed.), The psychobiology of the depressive disorders. New York: Academic Press, 1979.Google Scholar
  149. Welch, B. L., & Welch, A. S. Control of brain catecholamines and serotonin during acute stress and after d-amphetamine by natural inhibition of monoamine oxidase: An hypothesis. In E. Costa & S. Garattini (Eds.), Amphetamines and related compounds. New York: Raven Press, 1970.Google Scholar
  150. Wimer, R. E., Reid, N., & Eleftheriou, E. Serotonin levels in hippocampus: Striking variations associated with mouse strain and treatment. Brain Research, 1973, 63, 397–401.Google Scholar
  151. Yuwiler, A. Stress, anxiety and endocrine function. In R. G. Grenell & S. Gabay (Eds.), Biological foundations of psychiatry (Vol. 2 ). New York: Raven Press, 1976.Google Scholar
  152. Zajaczkowska, M. N. Acetylcholine content in the central and peripheral nervous system and its synthesis in the rat brain during stress and post-stress exhaustion. Acta Physiologica Polsky, 1975, 26, 493–497.Google Scholar
  153. Zornetzer, S. F. Neurotransmitter modulation and memory: A new neuropharmacological phrenology? In M. A. Lipton, A. D. Mascio, & K. F. Killam (Eds.), Psychopharmacology: A generation of progress. New York: Raven Press, 1978.Google Scholar
  154. Zornetzer, S. F., & Gold, M. S. The locus coeruleus: Its possible role in memory consolidation. Physiology and Behavior, 1976, 16, 331–336.Google Scholar
  155. Zornetzer, S. F., Gold, M. S., & Hendrickson, J. Alpha-methyl-p-tyrosine and memory: State-dependency and memory failure. Behavioural Biology, 1974, 12, 135–141.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Hymie Anisman
    • 1
  1. 1.Department of PsychologyCarleton UniversityOttawaCanada

Personalised recommendations