Advertisement

Neuropeptides and Memory

  • Béla Bohus

Abstract

The notion that peptide hormones of pituitary or brain origin are important modulators of behavioral adaptation stems from a unified endocrine and behavioral view of coping with environmental demands. Adaptive changes include a chain of physiological events such as cardiovascular, thermoregulatory, immunologic, and hormonal responses. The stress theory of Selye (1950) suggested that pituitary-adrenal response to “noxious” stimuli facilitates coping with environmental challenges, the theory also emphasized physically damaging stressors.

Keywords

Passive Avoidance Avoidance Response Retention Test Memory Consolidation Active Avoidance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ader, R., Weijnen, J. A. W. M., and Moleman, P. Retention of passive avoidance response as a function of the intensity and duration of electric shock. Psychonomic Sciences, 1972, 26, 125–128.Google Scholar
  2. Anderson, L. T., David, R., Bonnet, K., and Dancis, J. Passive avoidance learning in LeschNyhan disease: Effect of 1-desamino-8-arginine-vasopressin. Life Sciences, 1979, 24, 905–910.Google Scholar
  3. Ashton, H., Millman, J. E., Telford, R., Thompson, J. W., Davies, T. F., Hall, R., Shuster, S., Thody, A. J., Coy, D. H., and Kastin, A. J. Psychopharmacological and endocrinological effects of melanocyte stimulating hormones in normal man. Psychopharmacology, 1977, 55, 165–172.Google Scholar
  4. Bailey, W. H., and Weiss, J. M. Evaluation of a “memory deficit” in vasopressin-deficient rats. Brain Research, 1979, 162, 174–178.Google Scholar
  5. Blake, D. R., Dodd, M. J., and Grimley Evans, J. Vasopressin in amnesia. Lancet, 1978, 1, 608.Google Scholar
  6. Bloom, F., Segal, D., Ling, N., and Guillemin, R. Endorphins: Profound behavioral effects in rats suggest new etiological factors in mental illness. Science, 1976, 194, 630–632.Google Scholar
  7. Bohus, B. Effect of hypophyseal peptides on memory functions in rats. In G. Adam and J. Szentagothai (Eds.), The biology of memory. Budapest: Akadémiai Kiadó, 1971.Google Scholar
  8. Bohus, B. Effect of desglycinamide-lysine vasopressin (DG-LVP) on sexually motivated Tmaze behavior on the male rat. Hormones and Behavior, 1977, 8, 52–61.Google Scholar
  9. Bohus, B. Inappropriate synthesis and release of vasopressin in rats: Behavioral consequences and effects of neuropeptides. Neuroscience Letters, 1979, 3, 329.Google Scholar
  10. Bohus, B. Neuropeptide influences on sexual and reproductive behavior. In L. Zichella and P. Pancheri (Eds.), Psychoneuroendocrinology in reproduction. Vol. 5. Developmental endocrinology. Amsterdam: Elsevier/North-Holland, 1979. (b)Google Scholar
  11. Bohus, B. Endorphins and behavioral adaptation. Advances in Biological Psychiatry, 1980, 5, 7–18.Google Scholar
  12. Bohus, B., and de Wied, D. Inhibitory and facilitatory effect of two related peptides on extinction and avoidance behavior. Science, 1966, 153, 318–320.Google Scholar
  13. Bohus, B., and de Wied, D. Pituitary-adrenal system hormones and adaptive behaviour. In I. Chester-Jones and I. W. Henderson (Eds.), General, comparative and clinical endocrinology of the adrenal cortex. (Vol. 3 ). London: Academic Press, 1980.Google Scholar
  14. Bohus, B., and de Wied, D. Actions of ACTH- and MSH-like peptides on learning, performance, and retention. In J. L. Martinez, Jr., R. A. Jensen, R. B. Messing, H. Rigter and J. L. McGaugh (Eds.) Endogenous peptides and learning and memory processes, Academic Press, New York, 1981.Google Scholar
  15. Bohus, B., Nyakas, C. S., and Endröczi, E. Effects of adrenocorticotropic hormone on avoidance behavior of intact and adrenalectomized rats. International Journal of Neuropharmacology, 1968, 7, 307–314.Google Scholar
  16. Bohus, B., Ader, R., and de Wied, D. Effects of vasopressin on active and passive avoidance behavior. Hormones and Behavior, 1972, 3, 191–197.Google Scholar
  17. Bohus, B., Gispen, W. H., and de Wied, D. Effect of lysine vasopressin and ACTH410 on conditioned avoidance behavior of hypophysectomized rats. Neuroendocrinology, 1973, 11, 137–143.Google Scholar
  18. Bohus, B., Hendricks, H. H. L., van Kolfschoten, A. A., and Krediet, T. G. The effect of ACTH4_10 on copulatory and sexually motivated approach behavior in the male rat. In M. Sandler and G. L. Gessa (Eds.), Sexual Behavior: Pharmacology and biochemistry. New York: Raven Press, 1975.Google Scholar
  19. Bohus, B., van Wimersma Greidanus, T. J. B., and de Wied, D. Behavioral and endocrine responses of rats with hereditary hypothalamic diabetes insipidus (Brattleboro strain). Physiology and Behavior, 1975, 14, 609–6615.Google Scholar
  20. Bohus, B., Kovacs, G. L., and de Wied, D. Oxytocin and vasopressin and memory: Opposite effects on consolidation and retrieval processes. Brain Research, 1978, 157, 414–417.Google Scholar
  21. Bohus, B., Urban, I., van Wimersma Greidanus, T. J. B., and de Wied, D. Opposite effects of oxytocin and vasopressin on avoidance behavior and hippocampal theta rhythm in the rat. Neuropharmacology, 1978, 17, 239–247.Google Scholar
  22. Bohus, B., van Ree, J. M., and de Wied, D. Psychostimulant-like behavioral activities of a- endorphin and Des-Tyr1-a-endorphin. Neuroscience Letters,1980, Suppl. 5,S352.Google Scholar
  23. Bohus, B., Conti, L., Kovacs, G. L., and Versteeg, D. H. G. Modulation of memory processes by neuropeptides: Interaction with neurotransmitter systems. In H. Matthies and M. A. Brazieur (Eds.), Mechanisms and models of neural plasticity: The role of hippocampal structures. New York: Raven Press, 1982.Google Scholar
  24. Bookin, H. B., and Pfeifer, W. D. Effect of lysine vasopressin on pentylenetetrazol-induced retrograde amnesia in rats. Pharmacology, Biochemistry and Behavior, 1977, 7, 51–54.Google Scholar
  25. Branconnier, R. J., Cole, J. O., and Gardos, G. ACTH4–10 in the amelioration of neuro-psychological symptomatology associated with senile organic brain syndrome. Psycho-pharmacology, 1979, 61, 161–165.Google Scholar
  26. Buijs, R. M., Swaab, D. F., Dogterom, J., and van Leeuwen, F. W. Intra-and extra-hypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Research, 1978, 186, 423–433.Google Scholar
  27. Brush, F. R., and Levine, S. Adrenocortical activity and avoidance learning as a function of time after fear conditioning. Physiology and Behavior, 1966, 1, 309–311.Google Scholar
  28. Burbach, J. P. H., Loeber, J. G., Verhoef, J., Wiegant, V. M., de Kloet, E. R., and de Wied, D. Selective conversion of 13-endorphin into peptides related to -y-and a-endorphin. Nature, 1980, 238, 96–97.Google Scholar
  29. Buresovâ, O., and Skopkovâ, J. Vasopressin analogues and spatial short-term memory in rats. Peptides, 1980, 1, 261–263.Google Scholar
  30. Chrétien, M., Benjannet, S., Gossard, R., Gianoulakis, C., Crine, P., Lis, M., and Seidah, N. G. From ß-lipotropin to (3-endorphin and “pro-opiomelanocortin.” Canadian Journal of Biochemistry, 1979, 57, 1111–1121.Google Scholar
  31. Cools, A. R., Wiegant, V. M., and Gispen, W. H. Distinct dopaminergic systems in ACTH-induced grooming. European Journal of Pharmacology, 1978, 50, 265–268.Google Scholar
  32. Cooper, R. L., McNamara, M. C., and Thompson, W. Vasopressin and conditioned flavor aversion in aged rats. Neurobiology of Aging, 1980, 1, 53–57.Google Scholar
  33. Crow, T. J. Cortical synapses and reinforcement: A hypothesis. Nature, 1968, 219, 736–737.Google Scholar
  34. de Kloet, E. R., Palkovits, M., and Mezey, E. Opiocortin peptides: Localization, source and avenues of transport. Pharmacology, Therapeutics, 1981, 12, 321–351.Google Scholar
  35. de Wied, D. The significance of the antidiuretic hormone in the release mechanism of corticotropin. Endocrinology, 1961, 68, 956–970.Google Scholar
  36. de Wied, D. Influence of anterior pituitary on avoidance learning and escape behavior. American Journal of Physiology, 1964, 207, 255–259.Google Scholar
  37. de Wied, D. The influence of the posterior and intermediate lobe of the pituitary and pituitary peptides on the maintenance of a conditioned avoidance response in rats. International Journal of Neuropharmacology, 1965, 4, 157–167.Google Scholar
  38. de Wied, D. Inhibitory effect of ACTH and related peptides on extinction of conditioned avoidance behavior. Proceedings of the Society of Experimental Biology and Medicine, 1966, 122, 28–32.Google Scholar
  39. de Wied, D. Effects of peptide hormones on behavior. In W. F. Ganong and L. Martini (Eds.), Frontiers in neuroendocrinology. New York: Oxford University Press, 1969.Google Scholar
  40. de Wied, D. Long term effect of vasopressin on the maintenance of a conditioned avoidance response in rats. Nature, 1971, 232, 58–60.Google Scholar
  41. de Wied, D. Pituitary-adrenal system hormones and behavior. In F. O. Schmidt and F. G. Worden (Eds.), The neurosciences. Cambridge, Mass.: MIT Press, 1974.Google Scholar
  42. de Wied, D. Schizophrenia as an inborn error in the degradation of 3-endorphin: A hypothesis. Trends in Neuroscience, 1979, 2, 79–82.Google Scholar
  43. de Wied, D. Pituitary neuropeptides and behavior. In K. Fuxe, T. Hökfelt, R. Luft (Eds.), Central regulation of the endocrine system. New York: Plenum Press, 1980.Google Scholar
  44. de Wied, D., and Bohus, B. Long term and short term effects on retention of a conditioned avoidance response in rats by treatment with long acting pitressin and a-MSH. Nature, 1966, 212, 1484–1486.Google Scholar
  45. de Wied, D., Greven, H. M., Lande, S., and Witter, A. Dissociation of the behavioral and endocrine effects of lysine vasopressin by tryptic digestion. British Journal of Pharmacology, 1972, 45, 118–122.Google Scholar
  46. de Wied, D., Bohus, B., and van Wimersma Greidanus, T. J. B. The hypothalamo-neurohypophyseal system and the preservation of conditioned avoidance behavior in rats. In D. F. Swaab and J. P. Schadé (Eds.), Progress in brain research (Vol. 41 ). Amsterdam: Elsevier, 1974.Google Scholar
  47. de Wied, D., Bohus, B., and van Wimersma Greidanus, T. J. B. Memory deficit in rats with hereditary diabetes insipidus. Brain Research, 1975, 85, 152–156.Google Scholar
  48. de Wied, D., Witter, A. and Greven, H. M. Behaviourally active ACTH analogues. Biochemical Pharmacology, 1975, 24, 1463–1468.Google Scholar
  49. de Wied, D., Kovacs, G. L., Bohus, B., van Ree, J. M., and Greven, H. M. Neuroleptic activity of the neuropeptide ß-LPH 62–77 (Des-Tyrl-y-endorphin: DTyE). European Journal of Pharmacology, 1978, 49, 427–436.Google Scholar
  50. de Wied, D., Bohus, B., van Ree, J. M., and Urban, I. Behavioral and electrophysiological effects of peptides related to lipotropin (ß-LPH). Journal of Pharmacological and Experimental Therapy, 1978, 204, 570–580.Google Scholar
  51. Dornbush, R. L., and Nikolovski, O. ACTH4_10 and short-term memory. Pharmacology, Biochemistry and Behavior, 1976, 5 (Suppl. 1), 69–72.Google Scholar
  52. Ferris, S. H., Sathananthan, G., Gershon, S., Clark, C., and Moshinsky, J. Cognitive effects of ACTH4.10 in the elderly. Pharmacology, Biochemistry and Behavior, 1976, 5 (Suppl. 1), 73–78.Google Scholar
  53. Flexner, J. B., and Flexner, L. B. Pituitary peptides and the suppression of memory by puromycin. Proceedings of the National Academy of Sciences, 1971, 68, 2519–2521.Google Scholar
  54. Flood, J. F., Bennett, E. L., Rosenzweig, M. R., and Orme, A. E. The influence of duration of protein synthesis inhibition on memory. Physiology and Behavior, 1973, 10, 555–562.Google Scholar
  55. Flood, J. F., Bennett, E. L., Rosenzweig, M. R., and Orme, A. E. Comparison of the effects of anisomycin on memory across six strains of mice. Behavioral Biology, 1974, 10, 147–160.Google Scholar
  56. Flood, J. F., Jarvik, M. E., Bennett, E. L., and Orme, A. E. Effects of ACTH peptide fragments on memory formation. Pharmacology, Biochemistry and Behavior, 1976, 5 (Suppl. 1), 41–51.Google Scholar
  57. Garrud, P., Gray, J. A., and de Wied, D. Pituitary-adrenal hormones and extinction of rewarded behaviour in the rat. Physiology and Behavior, 1974, 12, 109–119.Google Scholar
  58. Gibbs, M. E., Ng, K. T. Memory: A new three phases model. Neuroscience Letters, 1976, 2, 165–169.Google Scholar
  59. Gilot, P., Crabbe, J., and Legros, J. J. Bilan mnesique chez 5 patients souffrant d’un diabete insipide central idiopathique. Acta Psychiatrica Belgica, 1980, 80, 755–780.Google Scholar
  60. Gispen, W. H., van Wimersma Greidanus, T. J. B., and de Wied, D. Effects of hypophysectomy and ACTH4_10 on responsiveness to electric shock in rats. Physiology and Behavior, 1970, 5, 143–146.Google Scholar
  61. Gispen, W. H., van Ree, J. M., and de Wied, D. Lipotropin and the central nervous system. International Review of Neurobiology, 1977, 20, 209–250.Google Scholar
  62. Gispen, W. H., Ormond, D., ten Haaf, J., and de Wied, D. Modulation of ACTH-induced grooming by Des-Tyr1-y-endorphin and haloperidol. European Journal of Pharmacology, 1980, 63, 203–207.Google Scholar
  63. Gispen, W. H., Wiegant, V. M., Bradbury, A. F., Hulme, E. C., Smyth, D. G., Snell, C. R. and de Wied, D. Induction of excessive grooming in the rat by fragments of lipotropin. Nature, 1976, 264, 794–795.Google Scholar
  64. Gold, P. E., and van Buskirk, R. Effects of posttrial injections on memory processes. Hormones and Behavior,1976, 7, 509–517. (a)Google Scholar
  65. Gold, P. E., and van Buskirk, R. Enhancement and impairment of memory processes with post-trial injections of adrenocorticotropic hormone. Behavioral Biology,1976, 16, 387–400. (b)Google Scholar
  66. Gold, P. E., Rose, R. P., Spanis, C. W., and Hankins, L. L. Retention deficit for avoidance training in hypophysectomized rats: Time-dependent enhancement of retention performance with ACTH injections. Hormones and Behavior, 1977, 8, 363–371.Google Scholar
  67. Gold, P. W., Weingartner, H., Ballenger, J. C., Goodwin, F. K., and Post, R. M. Effects of 1desamino-8-D-arginine vasopressin on behaviour and cognition in primary affective disorder. Lancet, 1979, 2, 992–994.Google Scholar
  68. Greven, H. M., and de Wied, D. The influence of peptides derived from corticotrophin (ACTH) on performance. Structure activity studies. In E. Zimmermann, W. H. Gispen, B. H. Marks, and D. de Wied (Eds.), Drug effects on neuroendocrine regulation. Vol. 39. Progress in brain research. Amsterdam: Elsevier, 1973.Google Scholar
  69. Greven, H. M., and de Wied, D. Influence of peptides structurally related to ACTH and MSH on active avoidance behavior in rats. A structure-activity relationship study. In Tj. B. van Wimersma Greidanus (Ed.), Frontiers of hormone research (Vol. 4 ). Basel: Karger, 1977.Google Scholar
  70. Guillemin, R., Ling, N., Lazarus, L., Burgus, R., Minick, S., Bloom, F., Nicoll, R., Siggins, G., and Segal, D. The endorphins, novel peptides of brain and hypophysial origin, with opiate-like activity: Biochemical and biological studies. Annual New York Academy of Science, 1977, 297, 131–156.Google Scholar
  71. Guth, S., Levine, S., and Seward, J. P. Appetitive acquisition and extinction effects with exogenous ACTH. Physiology and Behavior, 1971, 7, 195–200.Google Scholar
  72. Hagan, J. J., Bohus, B., and de Wied, D. Post training lysine vasopressin (LVP) may facilitate or delay shuttle box avoidance extinction. Neuroscience Letters, 1980, 5, 352.Google Scholar
  73. Hakanson, R., Ekman, R., Sundler, F., and Nilsson, R. A novel fragment of the corticotrophin-13-lipotropin precursor. Nature, 1980, 283, 789–792.Google Scholar
  74. Hilgard, E. R. Consciousness in contemporary psychology. Annual Review of Psychology, 1980, 31, 1–26.Google Scholar
  75. Hostetter, G., Jubb, S. L., and Kozlowski, G. P. Vasopressin affects the behavior of rats in a positively-rewarded discrimination task. Life Sciences, 1977, 21, 1323–1328.Google Scholar
  76. Isaacson, R. L., Dunn, A. J., Rees, H. D., and Waldock, B. ACTH410 and improved use of information in rats. Physiological Psychology, 1976, 4, 159–162.Google Scholar
  77. Izquierdo, I. Effect of 13-endorphin and naloxone on acquisition, memory and retrieval of shuttle avoidance and habituation learning in rats. Psychopharmacology,1980, 69, 111–115. (a)Google Scholar
  78. Izquierdo, I. Effects of a low and a high dose of I3-endorphin on acquisition and retention in the rat. Behavioral and Neural Biology,1980, 30,460–466. (b)Google Scholar
  79. Jenkins, J. S., Mather, H. M., Coughlan, A. K., and Jenkins, D. G. Desmopressin in post-traumatic amnesia. Lancet, 1979, 2, 1245–1246.Google Scholar
  80. Kastin, A. J., Sandman, C. A., Stratton, L. O., Schally, A. V., and Miller, L. H. Behavioral and electrographic changes in rat and man after MSH. In W. H. Gispen, T. J. B. van Wimersma Greidanus, B. Bohus, and D. de Wied (Eds.), Hormones homeostasis and the brain. Vol. 42. Progressive brain research. Amsterdam: Elsevier, 1975.Google Scholar
  81. Kesner, R. P. A neural system approach to the study of memory storage and retrieval. In R. R. Drucker-Colin and J. L. McGaugh (Eds.), Neurobiology of sleep and memory. New York: Academic Press, 1975.Google Scholar
  82. Keyes, J. B. Effect of ACTH on ECS-produced amnesia of a passive avoidance task. Physiological Psychology, 1974, 2, 307–309.Google Scholar
  83. Klein, S. B. Adrenal-pituitary influence in reactivation of avoidance-learning memory in the rat after immediate intervals. Journal of Comparative and Physiological Psychology, 1972, 3, 341–359.Google Scholar
  84. Kovacs, G. L., Vécsei, L., Szabó, G., and Telegdy, G. The involvement of catecholaminergic mechanisms in the behavioural action of vasopressin. Neuroscience Letters, 1977, 5, 337–344.Google Scholar
  85. Kovacs, G. L., Vécsei, L., and Telegdy, G. Opposite action of oxytocin to vasopressin in passive avoidance behavior in rats. Physiology and Behavior, 1978, 20, 801–802.Google Scholar
  86. Kovacs, G. L., Bohus, B., and Versteeg, D. H. G. Facilitation of memory consolidation by vasopressin: Mediation by terminals of the dorsal noradrenergic bundle? Brain Research, 1979, 172, 73–85.Google Scholar
  87. Kovacs, G. L., Bohus, B., Versteeg, D. H. G., de Kloet, E. R., and de Wied, D. Effect of oxytocin and vasopressin on memory consolidation: Sites of action and catecholaminergic correlates after local microinjection into limbic-midbrain structures. Brain Research, 1979, 175, 303–314.Google Scholar
  88. Kovacs, G. L., Bohus, B., and de Wied, D. Retention of passive avoidance behavior in rats following a-and -y-endorphin administration: Effects of postlearning treatments. Neuroscience Letters, 1981, 22, 79–82.Google Scholar
  89. Kovacs, G. L., Versteeg, D. H. G., de Kloet, E. R., and Bohus, B. Passive avoidance performance correlates with catecholamine turnover in discrete limbic regions. Life Sciences, 1981, 28, 1109–1116.Google Scholar
  90. Krejci, I., Kupkov5, B., Metys, J., Barth, T., and Jost, K. Vasopressin analogs: Sedative properties and passive avoidance behavior in rats. European Journal of Pharmacology, 1979, 56, 347–353.Google Scholar
  91. Krieger, D. T., and Liotta, A. S. Pituitary hormones in brain: Where, how and why? Science, 1979, 205, 366–372.Google Scholar
  92. Lande, S., Flexner, J. B., and Flexner, L. B. Effect of corticotropin and desglycinamide9 lysine vasopressin on suppression of memory by puromycin. Proceedings of the National Academy of Sciences, 1972, 69, 558–560.Google Scholar
  93. LeBoeuf, A., Lodge, J., and Eames, P. G. Vasopressin and memory in Korsakoff syndrome. Lancet, 1978, 2, 1370.Google Scholar
  94. Legros, J. J., Gilot, P., Seron, X., Claessens, J., Adam, A., Moeglen, J. M., Audibert, A., and Berchier, P. Influence of vasopressin on learning and memory. Lancet, 1978, 1, 41–42.Google Scholar
  95. LeMoal, M., Koob, G. F., and Bloom, F. E. Endorphins and extinction: Differential actions on appetitive and adversive tasks. Life Sciences, 1979, 24, 1631–1636.Google Scholar
  96. Leonard, B. E., and Rigter, H. Changes in brain monoamine metabolism and carbon dioxide amnesia in the rat. Pharmacology, Biochemistry and Behavior, 1975, 3, 775–780.Google Scholar
  97. Levine, S., Smotherman, W. P., and Hennessy, J. W. Pituitary-adrenal hormones and learned taste aversion. In L. H. Miller, C. A. Sandman, and A. J. Kastin (Eds.), Neuropeptide influences on the brain and behavior. New York: Raven Press, 1977.Google Scholar
  98. Lindvall, O., and Björklund, A. The organization of the ascending catecholamine neuron systems in the rat brain. Acta Physiologica Scandinavica, 1974, suppl. 412, 1–48.Google Scholar
  99. Liss£k, K. and Bohus, B. Pituitary hormones and avoidance behavior of the rat. International Journal of Psychobiology, 1972, 2, 103–115.Google Scholar
  100. Lowry, P. J., Silman, R., Jackson, S., and Estivariz, F. The lipotropin-and corticotropinrelated peptides of the mammalian pituitary. In M. T. Jones, B. Gilham, M. F. Dallman, and S. Chattopadhyay (Eds.), Interaction within the brain-pituitary-adrenocortical System. London: Academic Press, 1979.Google Scholar
  101. Mains, R. E., Eipper, B. A., and Ling, N. Common precursor to corticotrophins and endorphins. Proceedings of the National Academy of Sciences, 1977, 74, 3014–3018.Google Scholar
  102. Martinez, J. L., Jr., Vasquez, B. J., Jensen, R. A. Soumireu-Mouret, B., and McGaugh, J. L. ACTH4_9 analog (Org 2766) facilitates acquisition of an inhibitory avoidance response in rats. Pharmacology, Biochemistry and Behavior, 1979, 10, 145–147.Google Scholar
  103. McGaugh, J. L. Facilitative and disruptive effects of strychnine sulphate on maze learning. Psychological Reports, 1961, 8, 99–104.Google Scholar
  104. McGaugh, J. L., Zornetzer, S. F., Gold, P. E., and Landfield, P. W. Modification of memory systems: Some neurobiological aspects. Quarterly Review of Biophysics, 1972, 5, 163–186.Google Scholar
  105. McGaugh, J. L., Gold, P. E., van Buskirk, R., and Haycock, J. Modulating influences of hormones and catecholamines on memory storage processes. In W. H. Gispen, T. J. B. van Wimersma Greidanus, B. Bohus, and D. de Wied (Eds.), Hormones homeostasis and the brain. Vol. 42. Progress in brain research. Amsterdam: Elsevier, 1975.Google Scholar
  106. Miller, L. H., Harris, L. C., van Riezen, H., and Kastin, A. J. Neuroheptapeptide influence on attention and memory in man. Pharmacology, Biochemistry and Behavior,1976, 5, 17–21. (Suppl. 1)Google Scholar
  107. Nakanishi, S., Inoue, A., Kita, T., Nakamura, M., Chang, A. C. Y., Cohen, S. N., and Numa, S. Nucleotide sequence of cloned cDNA for bovine corticotrophin-ß-lipotropin precursor. Nature, 1979, 278, 423–427.Google Scholar
  108. Nyakas, C., Bohus, B., and de Wied, D. Effects of ACTH4_10 on self-stimulation behavior in the rat. Physiology and Behavior, 1980, 24, 759–764.Google Scholar
  109. Oliveros, J. C., Jandali, M. K., Timsit-Berthier, M., Remy, R., Benghezal, A., Audibert, A., and Moeglen, J. M. Vasopressin in amnesia. Lancet, 1978, 1, 42.Google Scholar
  110. Pedigo, N. W., Ling, N. C., Reisine, T. D., and Yamamura, H. I. Examination of DesTyrosinel-y-endorphin activity at 3H-spiroperidol binding sites in rat brain. Life Sciences, 1979, 24, 1645–1650.Google Scholar
  111. Pfeifer, W. D., and Bookin, H. B. Vasopressin antagonizes retrograde amnesia in rats following electroconvulsive shock. Pharmacology, Biochemistry and Behavior, 1978, 9, 261–263.Google Scholar
  112. Phifer, R. F., Orth, D. N., and Spicer, S. S. Specific demonstration of the human hypophyseal adrenocortico-melanotropic (ACTH/MSH) cell. Journal of Clinical Endocrinology and Metabolism, 1974, 39, 684–692.Google Scholar
  113. Ramaekers, F., Rigter, H., and Leonard, B. E. Parallel changes in behaviour and hippocampal monoamine metabolism in rats after administration of ACTH-analogues. Pharmacology, Biochemistry and Behavior, 1978, 8, 547–551.Google Scholar
  114. Rigter, H., and Popping, A. Hormonal influences on the extinction of conditioned taste aversion. Psychopharmacologia, 1976, 46, 255–261.Google Scholar
  115. Rigter, H., and van Riezen, H. Anti-amnesic effect of ACTH410: Its independence of the nature of the amnesic agent and the behavioral test. Physiology and Behavior, 1975, 14, 563–566.Google Scholar
  116. Rigter, H., van Riezen, H.,and de Wied, D. The effects of ACTH- and vasopressin-analogues on CO2-induced retrograde amnesia in rats. Physiology and Behavior, 1974, 13, 381–388.Google Scholar
  117. Rigter, H., van Eys, G., and Leonard, B. E. Hippocampal monoamine metabolism and the CO2-induced retrograde amnesia in rats. Physiology and Behavior, 1974, 13, 381–388.Google Scholar
  118. Roberts, J. L., and Herbert, E. Characterization of a common precursor to corticotropin and 13-lipotropin: Cell-free synthesis of the precursor and identification of corticotropin peptides in the molecule. Proceedings of the National Academy of Sciences, 1977, 74, 4826–4830.Google Scholar
  119. Roberts, D. C., Price, M. T. C., and Fibiger, H. C. The dorsal tegmental noradrenergic projection: An analysis of its role in maze learning. Journal of Comparative and Physiological Psychology, 1976, 90, 363–372.Google Scholar
  120. Sandman, C. A., George, J., McCanne, T. R., Nolan, J. D., Kaswan, J., and Kastin, A. J. MSH/ACTH 4–10 influences behavioral and physiological measures of attention. Journal of Clinical Endocrinology and Metabolism, 1977, 44, 884–891.Google Scholar
  121. Sands, S. F., and Wright, A. A. Enhancement and disruption of retention performance by ACTH in a choice task. Behavioral and Neural Biology, 1979, 27, 413–422.Google Scholar
  122. Schulz, H., Kovacs, G. L., and Telegdy, G. Effect of physiological doses of vasopressin and oxytocin on avoidance and exploratory behaviour in rats. Acta Physiologica Academiae Scientiarum Hungaricae, 1974, 45, 211–215.Google Scholar
  123. Selye, H. Stress. The physiology and pathology of exposure to stress. Acta Medica Publication, Montreal, 1950.Google Scholar
  124. Shibasaki, T., Ling, N., and Guillemin, R. A radioimmunoassay for g-melanocyte stimulating hormone. Life Sciences, 1980, 26, 1781–1785.Google Scholar
  125. Small, J. G., Small, I. F. Milstein, V., and Dian, D. A. Effects of ACTH 4–10 on ECT-induced memory dysfunctions. Acta Psychiatrica Scandinavica, 1977, 55, 241–250.Google Scholar
  126. Sofroniew, M. V., and Weindl, A. Projection from the parvocellular vasopressin and neurophysin-containing neurons of the suprachiasmatic nucleus. American Journal of Anatomy, 1978, 153, 391.Google Scholar
  127. Spear, N. E. Retrieval of memory in animals. Psychological Review, 1973, 80, 163–164.MathSciNetGoogle Scholar
  128. Stone, C. P., and Obias, M. D. Effects of hypophysectomy on behavior in rats. II. Maze and discrimination learning. Journal of Comparative and Physiological Psychology, 1955, 48, 404–411.Google Scholar
  129. Tanaka, M., de Kloet, E. R., de Wied, D., and Versteeg, D. H. G. Arginine8-vasopressin affects catecholamine metabolism in specific brain nuclei. Life Sciences, 1977, 20, 1799–1808.Google Scholar
  130. Timsit-Berthier, M., Mantanus, H., Jacques, C., and Legros, J. J. Utilité de la lysine-vassopressine dans le traitment de l’amnésie post-traumatique. Acta Psychiatrica Belgica, 1980, 80, 728–747.Google Scholar
  131. Urban, I., and de Wied, D. Neuropeptides: Effects on paradoxical sleep and theta rhythm in rats. Pharmacology, Biochemistry and Behavior, 1978, 8, 51–59.Google Scholar
  132. Valtin, H., and Schroeder, H. A. Familial diabetes insipidus in rats (Brattleboro strain). American Journal of Physiology, 1964, 206, 425–430.Google Scholar
  133. van Ree, J. M., Bohus, B., and de Wied, D. Similarity between behavioral effects of DesTyrl-y-endorphin and haloperidol and of a-endorphin and amphetamine. In E. L.Google Scholar
  134. Way (Ed.), Endogenous and exogenous opiate agonists and antagonists. New York: Pergamon Press, 1980.Google Scholar
  135. van Ree, J. M., Bohus, B., Csontos, K. M., Gispen, W. H., Greven, H. M., Nijkamp, F. P., Opmeer, F. A., de Rotte, G. A. A., van Wimersma Greidanus, T. J. B., Witter, A., and de Wied, D. Behavioral profile of -y-MSH: Relationship with ACTH and [3-endorphin. Life Sciences, 1981, 28, 2875–2888.Google Scholar
  136. van Wimersma Greidanus, Tj. B. Effects of MSH and related peptides on avoidance behavior in rats. In Tj. B. van Wimersma Greidanus (Ed.), Frontiers in hormone research (Vol. 4 ). Basel: Karger, 1977.Google Scholar
  137. van Wimersma Greidanus, Tj. B., and de Wied, D. Dorsal hippocampus: A site of action of neuropeptides on avoidance behavior? Pharmacology, Biochemistry and Behavior,1975 (Suppl. 1), 29–33. (a)Google Scholar
  138. van Wimersma Greidanus, Tj. B., and de Wied, D. Modulation of passive avoidance behavior of rats by intracerebroventricular administration of antivasopressin serum. Behavioral Biology,1976, 18,325–333. (b)Google Scholar
  139. van Wimersma Greidanus, Tj. B., Bohus, B., and de Wied, D. CNS sites of action of ACTH, MSH and vasopressin in relation to avoidance behavior. In W. E. Stumpf and L. D. Grant (Eds.), Anatomical neuroendocrinology. Karger: Basel, 1974.Google Scholar
  140. van Wimersma Greidanus, Tj. B., Dogterom, J., and de Wied, D. Intraventricular administration of anti-vasopressin serum inhibits memory in rats. Life Sciences, 1975, 16, 637–644.Google Scholar
  141. Vawter, M. P., and Green, K. F. Effects of Desglycinamide-lysine vasopressin on a conditioned taste aversion in rats. Physiology and Behavior, 1980, 25, 851–854.Google Scholar
  142. Veith, J. L., Sandman, C. A., George, J. M., and Stevens, V. C. Effects of MSH/ACTH 4–10 on memory, attention and endogenous hormone levels in women. Physiology and Behavior, 1978, 20, 43–50.Google Scholar
  143. Verhoef, J., Loeber, J. G., Burbach, J. P. H., Gispen, W. H., Witter, A., and de Wied, D. a-endorphin, g-endorphin and their Des-Tyrosine fragments in rat pituitary and brain tissue. Life Sciences. 1980, 26, 851–859.Google Scholar
  144. Wagner, A., Jârdânhâzy, T., Laczi, F., Szilard, J., Telegdy, G., and LSszló, F. Study of the psychological effects of lysine vasopressin and DDAVP in diabetes insipidus patients Acta Medica Academiae Scientiarum Hungaricae, 1979, 36, 81.Google Scholar
  145. Walter, R., Hoffman, P. L., Flexner, J. B., and Flexner, L. B. Neurohypophyseal hormones, analogs, and fragments: Their effect on puromycin-induced amnesia. Proceedings of the National Academy of Sciences, 1975, 72, 4180–4184.Google Scholar
  146. Watson, S. J., and Akil, H. On the multiplicity of active substances in single neurons: b-endorphin and a-melanocyte stimulating hormone as a model system. In D. de Wied and P. A. van Keep (Eds.), Hormones and the brain. Cambridge, Mass.: M.I.T. Press, 1981.Google Scholar
  147. Weinberger, S. B., Arnsten, A., and Segal, D. S. Des-Tyrosines-g-endorphin and haloperidol: Behavioral and biochemical differentiation. Life Sciences, 1979, 24, 1637–1644.Google Scholar
  148. Weingartner, H., Gold, P., Ballenger, J. C., Smallberg, S. A., Summers, R., Rubinow, D. R., Post, R., and Goodwin, F. K. Effects of vasopressin on human memory functions. Science, 1981, 211, 601–603.Google Scholar
  149. Wiegant, W. M., Cools, A. R., and Gispen, W. H. ACTH-induced excessive grooming involves brain dopamine. European Journal of Pharmacology, 1977, 41, 343–345.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Béla Bohus
    • 1
  1. 1.Rudolf Magnus Institute for PharmacologyUtrechtThe Netherlands

Personalised recommendations