A Comprehensive Investigation into a Nickel-Base Superalloy From Prealloyed Powders

  • R. L. Sands


A detailed investigation covering several years into the factors affecting the production and properties of sintered nickel-base heat-resisting alloys is described. Particular attention has been paid to the relationships between composition and creep strength. The role of boron and zirconium in sintered alloys is discussed in relation to the effects upon grain size. A method of producing powders from vacuum-melted alloys has been developed. The properties of specimens produced by sintering these powders are compared with those made also from air-/argon-melted powders. The elevated temperature, tensile, creep, fatigue and thermal shock properties of the best sintered alloys are compared with data for commercially available wrought and cast alloys. It is shown that the best sintered alloys are equal to the best vacuum-melted wrought alloys. However, the creep properties of the best nickel-base vacuum-cast alloys are still superior.


Powder Metallurgy Boron Content Creep Property Sintered Material Rupture Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shakespeare, C. R., and D. A. Oliver, “Some Characteristics of Hot-Extruded Powder Metal Billets,” These Proceedings, Volume 1, pp. 253–265.Google Scholar
  2. 2.
    Watkinson, J. F., Powder Met. 1/2: 13 (1958).Google Scholar
  3. 3.
    Poyner, G. T., V. A. Tracey, and J. F. Watkinson, Powder Metallurgy, Interscience (New York), 1961, p. 701.Google Scholar
  4. 4.
    Poyner, G. T., Metallurgia 61: 48 (1960).Google Scholar
  5. 5.
    Sands, R. L., and D. A. Oliver, in: F. Benesovsky (ed.), Powder Metallurgy in the Nuclear Age, Metallwerk Plansee (Reutte/Tirol, Austria), 1961, p. 692.Google Scholar
  6. 6.
    Kuczynski, G. C., Powder Metallurgy, Interscience (New York), 1961, p. 11.Google Scholar
  7. 7.
    Mackenzie, J. K., and R. Shuttleworth, Proc. Phys. Soc. B62: 12 (1949).Google Scholar
  8. 8.
    Alexander, B. H., and R. W. Balluffi, Acta Met. 5: 666 (1957).CrossRefGoogle Scholar
  9. 9.
    Roesch, G. K., and H. Zenner, Giesserei 46: 202 (1959).Google Scholar
  10. 10.
    Hagel, W. G., and H. T. Beattie, Trans. AIME 215: 967 (1959).Google Scholar
  11. 11.
    Nordheim, R., and N. J. Grant, Trans. AIME 200: 248 (1953).Google Scholar
  12. 12.
    Wilde, R. F., and N. J. Grant, Trans. AIME 209: 865 (1957).Google Scholar
  13. 13.
    Guard, R. W., and J. H. Westbrook, Trans. Met. Soc. AIME 215 (1959).Google Scholar
  14. 14.
    Bigelow, W. G., and J. A. Aucey, W.A.D.C. Rept. 58–406, 1958.Google Scholar
  15. 15.
    Gitus, J. H., Metal Treatment 27: 15 (1960).Google Scholar
  16. 16.
    Hütter, L. J., and H. H. Stadelmaier, Acta Met. 6: 367 (1958).CrossRefGoogle Scholar
  17. 17.
    Pecker, R. F., and C. G. Bieber, Am. Soc. Testing Mater. Spec. Tech. Publ. 262: 120 (1960).Google Scholar
  18. 18.
    Howie, A., Met. Rev. 6(62): 473 (1961).Google Scholar
  19. 19.
    McLean, D., Grain Boundaries in Metals, Oxford (New York), 1957.Google Scholar
  20. 20.
    Decker, R. F., J. P. Rowe, and J. W. Freeman, NASA Tech. Note 4049, 1957.Google Scholar
  21. 21.
    Decker, R. F., and J. W. Freeman, NASA Tech. Note 4286, 1958.Google Scholar
  22. 22.
    Volk, K. B., and A. W. Franklin, Z. Metallk. 51: 172 (1960).Google Scholar
  23. 23.
    Bieber, C. G., and R. J. Raudebaugh, A. S. M. Symposium on Precipitation from Solid Solution, 1959, p. 417.Google Scholar
  24. 24.
    Glenny, E., J. E. Northwood, S. W. K. Shaw, and T. A. Taylor, J. Inst. Metals 87: 294 (1958–1959).Google Scholar

Copyright information

© Springer Science+Business Media New York 1966

Authors and Affiliations

  • R. L. Sands
    • 1
  1. 1.The B.S.A. Group Research CentreBirminghamEngland

Personalised recommendations