Advertisement

Damage and Diffusion in Aluminum and an Al-Al2O3 Alloy Following Bombardments with Oxygen or Inert Gas

  • Erich Ruedl
  • Roger Kelly

Abstract

Damage and diffusion phenomena in aluminum and an Al-Al2O3 alloy (SAP) have been studied following bombardments with oxygen or inert gas. Use is made of transmission electron microscopy, measurements of gas release, and depth-distribution measurements. A dose and dose-rate dependence for the appearance of damage in aluminum and SAP is found for both oxygen and neon bombardments at 9 keV. The damage is more aligned, however, when oxygen is used than when neon is used. The difference in arrangement can be explained by assuming a different mobility of the loops depending on whether oxygen or neon is present in the aluminum lattice. The annealing behavior of the damage also depends on which gas is used in the bombardment. In the case of oxygen, the damage anneals out roughly in the temperature range for aluminum self-diffusion (150–200°C). In the case of neon, large loops and tangles are present even at 500°C. Moreover, neon-bombarded specimens at high temperatures show small bubbles and large undefined features. The latter are assumed to be gas pockets or blisters near the metal-oxide-skin interface. Gas-release experiments following krypton and xenon bombardments at > 5 keV show that more than 99% of the gas is retained to the melting point This is explained by means of depth distributions to be due to trapping near the metal-oxide-skin interface and, thus, confirms the observation of gas pockets or blisters. After bombardments below ~ 5 keV, gas is released beginning at the ambient temperature. Such release is analogous to that observed in other systems at low bombardment energies.

Keywords

Burger Vector Dislocation Loop Annealing Behavior Oxygen Bombardment Neon Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moak, C. D., H. Reese, and W. M. Good, Nucleonics 9: 18 (September 1951).Google Scholar
  2. 2.
    Kelly, R., and Hj. Matzke, J. Nucl. Mater. 17: 179 (1965).CrossRefGoogle Scholar
  3. 3.
    Davies, J. A., J. Friesen, and J. D. McIntyre, Can. J. Chem. 38: 1526 (1960).CrossRefGoogle Scholar
  4. 4.
    Kubaschewski, O., and B. E. Hopkins, Oxidation of Metals and Alloys, 2nd ed., Butterworths (London), 1962, p. 38.Google Scholar
  5. 5.
    Kelly, R., and F. Brown, Acta Met. 13: 169 (1965).CrossRefGoogle Scholar
  6. 6.
    Davies, J. A., F. Brown, and M. McCargo, Can. J. Phys. 41: 829 (1963).CrossRefGoogle Scholar
  7. 7.
    Sosin, A., and L. H. Rachal, Phys. Rev. 130: 2238 (1963).CrossRefGoogle Scholar
  8. 8.
    Beevers, C. J., and R. S. Nelson, Phil. Mag. 8: 1189 (1963).CrossRefGoogle Scholar
  9. 9.
    Westmacott, K. H., A. C. Roberts, and R. S. Barnes, Proceedings of the Fifth International Congress for Electron Microscopy, Vol. 1, Academic Press Inc. (New York), 1962, p. F-11.Google Scholar
  10. 10.
    Westmacott, K. H., and A. C. Roberts, Harwell (UK), Report AERE-M 1488 (1964).Google Scholar
  11. 11.
    Bierlein, T. K., and B. Mastel, Proceedings of the Fifth International Congress for Electron Microscopy, Vol. 1, Academic Press Inc. (New York), 1962, p. F-5.Google Scholar
  12. 12.
    Ashby, M. F., and L. M. Brown, Phil. Mag. 8: 1649 (1964).CrossRefGoogle Scholar
  13. 13.
    Ruedl, E., and E. Staroste, J. Nucl. Mater. 16: 103 (1965).CrossRefGoogle Scholar
  14. 14.
    Bowden, P., and D. G. Brandon, Phil. Mag. 8: 935 (1963).CrossRefGoogle Scholar
  15. 15.
    Bowden, P., and D. G. Brandon, J. Nucl. Mater. 9: 348 (1963).CrossRefGoogle Scholar
  16. 16.
    Kornelsen, E. V., Can. J. Phys. 42: 364 (1964).CrossRefGoogle Scholar
  17. 17.
    Kuhlmann-Wilsdorf, D., Phil. Mag. 3: 125 (1958).CrossRefGoogle Scholar
  18. 18.
    Ruedl, E., P. Delavignette, and S. Amelinckx, J. Nucl. Mater. 6: 46 (1962).CrossRefGoogle Scholar
  19. 19.
    Van Bueren, H. G., Imperfections in Crystals, North-Holland Publishing Co. (Amsterdam), 1960, Chapt. IX.Google Scholar
  20. 20.
    Silcox, J., and M. J. Whelan, Phil. Mag. 5: 1 (1960).CrossRefGoogle Scholar
  21. 21.
    Ruedl, E., and R. Kelly, J. Nucl. Mater. 16: 89 (1965).CrossRefGoogle Scholar
  22. 22.
    Kelly, R., and E. Ruedl, Proceedings of the Third European Regional Conference on Electron Microscopy, Vol. A, Czechoslovak Academy of Sciences (Prague), 1964, p. 185.Google Scholar
  23. 23.
    Ells, C. E., Acta Met. 11: 87 (1963).CrossRefGoogle Scholar
  24. 24.
    Levy, V., presented at “Journées Métallurgiques d’Automne,” Paris, 1964.Google Scholar
  25. 25.
    Barnes, R. S., and D. J. Mazey, Phil. Mag. 5: 1247 (1960).CrossRefGoogle Scholar
  26. 26.
    Barnes, R. S., and D. J. Mazey, Proc. Roy. Soc. A275: 47 (1963).Google Scholar
  27. 27.
    Barnes, R. S., and D. J. Mazey, Proceedings of the Third European Regional Conference on Electron Microscopy, Vol. A, Czechoslovak Academy of Sciences (Prague), 1964, p. 197.Google Scholar
  28. 28.
    Williamson, G. K., and R. M. Cornell, Berkeley Nuclear Labs. (UK) Report RD/B/N. 279 (1964).Google Scholar
  29. 29.
    Ashbee, K. G. H., Phil. Mag. 11: 637 (1965).CrossRefGoogle Scholar
  30. 30.
    Auskern, A., J. Am. Ceram. Soc. 47: 390 (1964).CrossRefGoogle Scholar
  31. 31.
    Matzke, Hj., and J. L. Whitton, Can. J. Phys. (in press).Google Scholar
  32. 32.
    Jech, C., and R. Kelly, J. Nucl. Mater. (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1966

Authors and Affiliations

  • Erich Ruedl
    • 1
  • Roger Kelly
    • 1
  1. 1.EuratomIspra, VareseItaly

Personalised recommendations