Influence of Straggling Effects on the Accurate Measurement of Nuclear Reaction Energies

  • Jörg W. Müller
Conference paper


The fact that particles do not lose their energy in a target continuously, but in discrete steps, can result in a considerable change of the apparent shape and position of a resonance. A method for determining the shift of the midpoint in a yield curve for thick targets is sketched and numerical results are given in graphical form.


Energy Loss Yield Curve Energy Loss Mechanism Apparent Shape Partial Fraction Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Bumiller, J.W. Müller, H.H. Staub: “Eine direkte Bestimmung der Resonanzbreite von Al-27(p,y)Si-28 bei 991 keV”, Helv. Phys. Acta 29, 234 (1956)Google Scholar
  2. [2]
    J.W. Müller: “Direkte Bestimmung der Halbwertsbreite von Al-27(p,γ)Si-28 bei 991 keV”, Master Thesis, University of Zurich (April 1958)Google Scholar
  3. [3]
    A. del Collar: “An Absolute Determination of an Al(p,y)Si Resonance”, Master Thesis, Catholic University of America, Washington, D.C. (1959); not availableGoogle Scholar
  4. [4]
    W.L. Walters, D.G. Costello, J.G. Skofronick, D.W. Palmer, W.E. Kane, R.G. Herb: “Lewis Effect in Resonance Yield Curves”, Phys. Rev. Letters 7, 284 (1961)ADSCrossRefGoogle Scholar
  5. [5]
    H.W. Lewis: “Straggling Effects on Resonance Yields”, Phys. Rev. 125, 937 (1962)ADSCrossRefGoogle Scholar
  6. [6]
    W.L. Walters, D.G. Costello, J.G. Skofronick, D.W. Palmer, W.E. Kane, R.G. Herb: “Anomalies in Yield Curves over the 992-keV Al-27(p,γ)Si-28 Resonance”, Phys. Rev. 125, 2012 (1962)ADSCrossRefGoogle Scholar
  7. [7]
    J.W. Muller: “Stragglingeffekte bei Resonanzkurven”, University of Zurich (August 1962)Google Scholar
  8. [8]
    D.R. Cox: “Renewal Theory” ( Methuen, London, 1962 )MATHGoogle Scholar
  9. [9]
    D.W. Palmer, J.G. Skofronick, D.G. Costello, A.L. Morsell, W.E. Kane, R.G. Herb: “Monte Carlo Calculation of Resonance Yield Curves and Resonance Energy Determination”, Phys. Rev. 130, 1153 (1963)ADSCrossRefGoogle Scholar
  10. [10]
    J.W. Müller: “Doppel-and Tripel-Korrelationsmessungen an einer Gammakaskade bei Al-27(p,γ)Si-28”, Doctoral Thesis, University of Zurich ( Juris, Zurich, 1963 )Google Scholar
  11. [11]
    R.G. Herb: “Atomic Effects on Nuclear Reaction Yield Curves”, in “Nuclidic Masses” (ed. W.H. Johnson), 241 ( Springer, Wien, 1964 )Google Scholar
  12. [12]
    H.H. Staub: “Nuclear Resonance Energies”, in “Nuclidic Masses” (as above), 257Google Scholar
  13. [13]
    R. Bloch: “Die Reaktion A-40(p,γ)K-41”, Master Thesis, University of Zurich (February 1964)Google Scholar
  14. [14]
    D.G. Costello, J.G. Skofronick, A.L. Morsell, D.W. Palmer, R.G. Herb: “Atomic effects on nuclear resonance reaction yield curves of aluminium and nickel”, Nucl. Phys. 51, 113 (1964)CrossRefGoogle Scholar
  15. [15]
    J.G. Skofronick, J.A. Ferry, D.W. Palmer, G. Wendt, R.G. Herb: “Detailed Forms of Yield Curves from Semithick Aluminum Targets”, Phys. Rev. 135, A1429 (1964)ADSCrossRefGoogle Scholar
  16. [16]
    R. Bloch, R.E. Pixley, H.H. Staub, F. Waldner: “Resonances in the 40-A(p,γ)41-K Reaction”, Helv. Phys. Acta 37, 722 (1964)Google Scholar
  17. [17]
    J.W. Muller: “Traitement statistique des résultats de mesure”, Rapport BIPM-108 (1969 ff)Google Scholar

Copyright information

© Plenum Publishing Company Ltd 1972

Authors and Affiliations

  • Jörg W. Müller
    • 1
  1. 1.Bureau International des Poids et MesuresSèvresFrance

Personalised recommendations