Coulomb Energies and Nuclear Shapes

  • Joachim Janecke
Conference paper


One of the first estimates of nuclear radii was obtained from experimental Coulomb energies. Bethe (1), over 30 years ago, showed that the energy difference between the ground states of mirror nuclei is essentially due to a difference in electrostatic energy. Assuming spherical charge distributions of uniform density, charge radii were extracted. Many experimental and theoretical papers on Coulomb energies have appeared since, but muonic X-ray and electron scattering experiments (2,3) have contributed considerably more to the understanding of the size and shape of nuclear charge distributions. Only very recently Nolen and Schiffer (4) have reestablished the importance of Coulomb energy data for obtaining information about nuclear sizes. They showed that the Coulomb displacement energy between any nuclear state, a ground state for example, and its analogue state in the neighboring proton-rich isobar depends strongly on the radial distribution of the neutron excess in the ground state. Thus, experimental Coulomb displacement energies, now known even in heavy nuclei (5), present a powerful tool for determining distributions of neutrons.


Isotope Shift Charge Radius Coulomb Energy Nuclear Shape Neutron Halo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BETHE, H. A., and BACHER, R. F., Rev. Mod. Phys. 8, 82 (1936); BETHE, H. A., Phys. Rev. 54, 436 (1938).Google Scholar
  2. 2.
    ELTON, L. R. B., Nuclear Radii, Landolt-Börnstein, New Series Vol. 1/4 (Springer, Berlin, Heidelberg, New York, 1967 ) p. 1.Google Scholar
  3. 3.
    HOFSTADTER, R., and COLLARD, H. R., ibid, p. 21.Google Scholar
  4. 4.
    NOLEN, J. A., and SCHIFFER, J. P., Ann. Rev. Nucl. Sci. 19, 471 (1969).Google Scholar
  5. 5.
    ANDERSON, J. D., WONG, C., and MC CLURE, J. W., Phys. Rev. 138, 8615 (1965).Google Scholar
  6. 6.
    AUERBACH, N., HUFNER, J., KERMAN, A. K., and SHAKIN. C. M., Phys. Rev. Letters 23, 484 (1969).ADSCrossRefGoogle Scholar
  7. 7.
    AUERBACH, E. H., KAHANA S., and WENESER, J., Phys. Res. Letters 23, 1253 (1969).ADSCrossRefGoogle Scholar
  8. 8.
    AUERBACH, E. H., KAHANA, S., SCOTT, C. K., and WENESER, J., Phys. Rev. 188, 1747 (1969).ADSCrossRefGoogle Scholar
  9. 9.
    WONG, C. W., Nucl. Phys. A151, 323 (1970).CrossRefGoogle Scholar
  10. 10.
    DAMGAARD, J., SCOTT, C. K., and OSNES, E., Nucl. Phys. A154, 12 (1970).CrossRefGoogle Scholar
  11. 11.
    NEGELE, J. W., Nucl. Phys. A165, 305 (1971).CrossRefGoogle Scholar
  12. 12.
    Nguyen Van Giai, VAUTHERIN, D., VENERONI, M., and BRINK, D. M., (to be published).Google Scholar
  13. 13.
    JANECKE, J., (to be published).Google Scholar
  14. 14.
    DRAAYER, J. P., and Janecke, J., (to be published).Google Scholar
  15. 15.
    ELTON, L. R. B., Nucl. Phys. 5, 173 (1958) and 8, 396 (1958); Meyer-BerkhouT,U., et al., Ann. Phys. (N.Y.) 8,-119 (1959).Google Scholar
  16. 16.
    RHODES, P., Proc. Roy. Soc. (London) A204, 396 (1950).Google Scholar
  17. 17.
    WILSON, A. H., The Theory of Metals ( Cambridge, At the University Press, 1958 ) p. 330.Google Scholar
  18. 18.
    JANECKE, J., Chapter 8 in Isospin in Nuclear Physics, edited by D. H. Wilkinson, ( North-Holland, Amsterdam 1969 ).Google Scholar
  19. 19.
    BROWN, G. E., and GREEN, A. M., Nucl. Phys. 75, 401 (1966).CrossRefGoogle Scholar
  20. 20.
    ROST, E., Phys. Letters 21, 87 (1966).ADSCrossRefGoogle Scholar
  21. 21.
    GERACE, W. J., and GREEN, A. M., Nucl. Phys. A93, 110 (1967).CrossRefGoogle Scholar
  22. 22.
    AGASSI, D., GILLET, V., and LUMBROSO, A., Nucl. Phys. A130, 129 (1969).CrossRefGoogle Scholar
  23. 23.
    VERGADOS, J. V., Phys. Letters 34B, 458 (1971).ADSGoogle Scholar
  24. 24.
    MYERS, W. D., Phys. Letters 30B, 451 (1969).ADSCrossRefGoogle Scholar
  25. 25.
    MYERS, W. D., and SWIATECKI, W. J., Ann. Phys. 55, 395 (1969).ADSCrossRefGoogle Scholar
  26. 26.
    BERTSCH, G. F., Phys. Letters 26B, 130 (1968).ADSGoogle Scholar
  27. 27.
    STELSON, P. H., and GRODZINS, L., Nucl. Data Tables Al, 21 (1965).Google Scholar
  28. 28.
    LöBNER, K. E. G., Vetter, M.,and Honig, V., Nucl. Data Tables A7, 495 (1970).ADSGoogle Scholar
  29. 29.
    LANE, A. M., Nucl. Phys. 35, 676 (1962).CrossRefGoogle Scholar
  30. 30.
    PEREY, F. G., and SCHIFFER, J. P., Phys. Rev. Letters 17, 324 (1966).ADSCrossRefGoogle Scholar
  31. 31.
    WU, C. S., International Nuclear Physics Conference, Gatlinburg (1966) p. 409.Google Scholar

Copyright information

© Plenum Publishing Company Ltd 1972

Authors and Affiliations

  • Joachim Janecke
    • 1
  1. 1.The University of MichiganAnn ArborUSA

Personalised recommendations