Advertisement

Increased Susceptibility to Infection Due to Dysfunction of Granulocytes

  • David G. Nathan
  • Robert L. Baehner

Abstract

The vital protective role of the granulocyte in the defense against bacterial infection is well established by clinical experience. Of course the consequences of granulocytopenia are far more frequently observed in human disease than are the results of disorders of granulocyte function. Nevertheless, studies of disturbances of granulocyte function and the interaction of granulocytes with the plasma proteins and bacteria are vital subjects of clinical investigation not only because they reveal information concerning enhanced susceptibility to infection, but also because they help to unravel the complexities of granulocyte physiology.

Keywords

Respiratory Burst Chronic Granulomatous Disease NADH Oxidase Chronic Granulomatous Disease Patient Latex Spherule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alper, C. A., Abramson, N., Johnston, R. B., Jr., Jandl, J. H. and Rosen, F. S. Increased susceptibility to infection associated with abnormalities of complement-mediated functions and of the third component of complement (C3) NEJM. In press.Google Scholar
  2. 2.
    Miller, M.E., Seals, J., Kaye, R., and Levitsky, L. C. A familial plasma-associated defect of phagocytosis. A new cause of recurrent bacterial infection. Lancet 2: 163, 1968.Google Scholar
  3. 3.
    Miller, M. E. Phagocytosis in the newborn infant: Humoral and cellular factors. J. Pediat. 74: 255, 1969.CrossRefGoogle Scholar
  4. 4.
    Coen, R., Grush, O., and Kauder, E. Studies of bactericidal activity and metabolism of the leukocyte in full-term neonates. J. Pediat. 75: 400, 1969.CrossRefGoogle Scholar
  5. 5.
    Michelle, R. H., Pancake, S. J., Noseworthy, J. and Karnovsky, M. L. Measurements of rates of phagocytosis: The use of cellular monolayers. J. Cell. Biol. 40: 216, 1969.CrossRefGoogle Scholar
  6. 6.
    Singer, J. M., and Van Oss, C. J. Radioiodination of latex particles. J. Reticuloendothel. Soc. 6: 281, 1969.Google Scholar
  7. 7.
    Baehner, R. L. Personal observation.Google Scholar
  8. 8.
    Malawista, S. E., and Bodel, D. T. The dissociation by colchicine of phagocytosis from increased oxygen consumption in human leukocytes. J. Clin. Invest. 46: 786, 1967.CrossRefGoogle Scholar
  9. 9.
    Elsbach, D. Increased synthesis of phospholipid during phagocytosis. J. Clin. Invest. 47: 2217, 1968.CrossRefGoogle Scholar
  10. 10.
    Shohet, S. B. Changes in fatty acid metabolism in human leukemic granulocytes during phagocytosis. Submitted to J. Lab. Clin. Med. 1969.Google Scholar
  11. 11.
    Karnovsky, M. L., and Wallach, D. F. W. The metabolic basis of phagocytosis. III. Incorporation of inorganic phosphate into various classes of phosphatides during phagocytosis. J. Biol. Chem. 236: 1895, 1961.Google Scholar
  12. 12.
    Klebanoff, S. J. Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J. Bact. 95: 2131, 1968.Google Scholar
  13. 13.
    Klebanoff, S. J., Clem, W. H., and Luebke, R. G. The peroxidase-thiocyanate-hydrogen peroxide antimicrobial system. Biochim. Biophys. Acta 117: 63, 1966.CrossRefGoogle Scholar
  14. 14.
    Cohn, Z. A. and Hirsch, J. G. The influence of phagocytosis on the intracellular distribution of granule associated components of polymorphonuclear leukocytes. J. Exp. Med. 112: 1015, 1960.CrossRefGoogle Scholar
  15. 15.
    Weissmann,G. The role of lysosomes in inflammation and disease. Ann. Rev. Med. 18: 97, 1967.CrossRefGoogle Scholar
  16. 16.
    Blume, R. S., Bennett, J. M., Yankee, R. A., and Wolff, S. M. Defective granulocyte regulation in Chediak-Higashi syndrome. New Eng. J. Med. 279: 1009, 1968.Google Scholar
  17. 17.
    Valentine, W. N., and Beck, W. C. Biochemical studies on leukocytes. I. Phosphatase activity in health, leukocytosis, and lyelocytic leukemia. J. Lab. Clin. Med. 38: 39, 1951.Google Scholar
  18. 18.
    Lewis, S. M., and Dacie, J. Neutrophil (leucocyte) alkaline phosphatase in paroxysmal nocturnal haemoglobinuria. Brit. J. Haemat. 11: 549, 1965.CrossRefGoogle Scholar
  19. 19.
    Sammour, M. B., and Hilal, S. O. Alkaline phosphatase activity of polymorphonuclear leukocytes in relation to oral contraceptives. Amer. J. Obstet. Gynec. 103: 832, 1969.Google Scholar
  20. 20.
    Lehrer, R. I., and Cline, M. J. Leukocyte myeloperoxidase deficiency and disseminated candidiasis: The role of myeloperoxidase in resistance to Candida infection. J. Clin. Invest. 48: 1478, 1969.CrossRefGoogle Scholar
  21. 21.
    Zeya, H. I., and Spitznagel, J. K. Antimicrobial specificity of leukocyte lysosomal cationic proteins. Science 154: 1049, 1966.CrossRefGoogle Scholar
  22. 22.
    Zeya, H. I., and Spitznagel, J. K. Arginine-rich proteins of polymorphonuclear leukocyte lysosomes: Antimicrobial specificity and biochemical heterogeneity. J. Exp. Med. 127: 927, 1968.CrossRefGoogle Scholar
  23. 23.
    Zucker-Franklin, D., and Hirsch, J. G. Electron microscope studies on the degranulation of rabbit peritoneal leukocytes during phagocytosis. J. Exp. Med. 120: 569, 1964.CrossRefGoogle Scholar
  24. 24.
    Nathan, D. G. Personal communication.Google Scholar
  25. 25.
    Hirsch, J. G. Cinemicrophotographic observations on granule lysis in polymorphonuclear leucocytes during phagocytosis. J. Exp. Med. 116: 827, 1962.CrossRefGoogle Scholar
  26. 26.
    Weissmann, G. Labilization and stabilization of lysosomes. Fed. Proc. 23: 1038, 1964.Google Scholar
  27. 27.
    Berendes, H., Bridges, R. A., and Good, R. A. Fatal granulomatosus of childhood: Clinical study of a new syndrome. Minn. Med. 40: 309, 1957.Google Scholar
  28. 28.
    Janeway, C. A., Craig, J., Davidson, M., Downey, N., Gitlin, D., and Sullivan, J. C. Hypergamma globulinemia associated with severe recurrent and nonspecific infection. Amer. J. Dis. Child. 88: 388, 1954.Google Scholar
  29. 29.
    Landing, B. H., and Shirkey, H. S. Syndrome of recurrent infection and infiltration of viscera by pigmented lipid histiocytes. Pediatrics 20: 431, 1957.Google Scholar
  30. 30.
    Carson, M. J., Chadwick, D. L., Brubaker, C. A., Cleland, R. S., and Landing, B. H. Thirteen boys with progressive septic granulomatosis. Pediatrics 35: 405, 1965.Google Scholar
  31. 31.
    Philippart, A. I., Colodny, A. H., and Baehner, R. L. Chronic granulomatous disease of childhood. J. Pediat. Surg. 4: 85, 1969.CrossRefGoogle Scholar
  32. 32.
    Holmes, B., Quie, P. G., Windhorst, D. B., and Good, R. A. Fatal granulomatous disease of childhood: An inborn abnormality of phagocytic function. Lancet 1: 1225, 1966.CrossRefGoogle Scholar
  33. 33.
    Kaplan, E. L., Laxdal, T., and Quie, P. G. Studies of polymorphonuclear leukocytes from patients with chronic granulo-matous disease of childhood: Bactericidal capacity for streptococci. Pediatrics 41: 591, 1968.Google Scholar
  34. 34.
    Macfarlane, P. S., Speirs, A. L., and Sommerville, R. G. Fatal granulomatous disease of childhood and benign lymphocytic infiltration of skin: (congenital dysphagocytosis). Lancet 1: 408, 1967.CrossRefGoogle Scholar
  35. 35.
    Davis, W. C., Douglas, S. D., and Fudenberg, H. H. A selective neutrophil dysfunction syndrome: Impaired killing of Staphy- locci. Ann. Intern. Med. 69: 1237, 1968.Google Scholar
  36. 36.
    Johnston, R. B., Jr., and Baehner, R. L. Improvement of leukocyte bactericidal activity in chronic granulomatous disease. Blood. In press.Google Scholar
  37. 37.
    Anderson, V., Koch, C., Vejlsgaard, R. and Wilken-Jenses, K. Fatal granulomatous disease. Acta Paediat. Scand. 57: 110, 1968.CrossRefGoogle Scholar
  38. 38.
    Nathan, D. G., Baehner, R. L., and Weaver, D. K. Failure of nitroblue tetrazolium reduction in the phagocytic vacuoles of leukocytes in chronic granulomatous disease. J. Clin. Invest. 48: 1895, 1969.CrossRefGoogle Scholar
  39. 39.
    Quie, P. G., White, J. G., Holmes, B., and Good, R. A. In vitro bactericidal capacity of human polymorphonuclear leukocytes: Diminished activity in chronic granulomatous disease of childhood. J. Clin. Invest. 46: 668, 1967.Google Scholar
  40. 40.
    Kauder, E., Kahle, L. L., Morene, H., and Partin, J. C. Leukocyte degranulation and vacuole formation in patients with chronic granulomatous disease of childhood. J. Clin. Invest. 47: 1753, 1968.CrossRefGoogle Scholar
  41. 41.
    Elsbach, P., Zucker-Franklin, D., and Sansaricq, C. Increased lecithin synthesis during phagocytosis by normal leukocytes and by leukocytes in chronic granulomatous diseases. New Eng. J. Med. 280: 1319, 1969.CrossRefGoogle Scholar
  42. 42.
    Baehner, R. L., Karnovsky, M. T., and Karnovsky, M. L. De-granulation of leukocytes in chronic granulomatous disease. J. Clin. Invest. 47: 187, 1969.CrossRefGoogle Scholar
  43. 43.
    Mandell, G. L., and Hook, E. W. Leukocyte function in chronic granulomatous disease of childhood. Amer. J. Med. 47: 473, 1969.CrossRefGoogle Scholar
  44. 44.
    Baldridge, C. W., and Gerard, R. W. The extra respiration of phagocytosis. Amer. J. Physiol. 103: 235, 1933.Google Scholar
  45. 45.
    Sbarra, A. J., and Karnovsky, M. L. Biochemical basis of phagocytosis particles by polymorphonuclear leukocytes. J. Biol. Chem. 234: 1355, 1959.Google Scholar
  46. 46.
    Iyer, G. Y., Islam, M. F., and Quastel, J. H. Biochemical aspects of phagocytosis. Nature (London) 192: 535, 1961.CrossRefGoogle Scholar
  47. 47.
    Chance, B. On the reaction of catalase peroxides with acceptors. J. Biol. Chem. 182: 649, 1950.Google Scholar
  48. 48.
    Cagan, R. H., and Karnovsky, M. L. The enzymatic basis of the respiratory stimulation during phagocytosis. Nature (London) 204: 255, 1964.CrossRefGoogle Scholar
  49. 49.
    Zatti, M., and Rossi, F. Mechanism of respiratory stimulation in phagocytozing leukocytes: KCN-insensitive oxidation of NADPH2. Experientia 22: 758, 1966.CrossRefGoogle Scholar
  50. 50.
    Baehner, R. L., Gilman, N. and Karnovsky, M. L. Respiration and glucose oxidation in human and guinea pig leukocytes - comparative studies. J. Clin. Invest. In press.Google Scholar
  51. 51.
    Holmes, B., and Page, A. R. Metabolic abnormalities of leukocytes from children with CGD. J. Cell. Biol. 31: 48a, 1966.Google Scholar
  52. 52.
    Baehner, R. L., and Nathan, D. G. Leukocyte oxidase: Defective activity in chronic granulomatous disease. Science 155: 835, 1967.CrossRefGoogle Scholar
  53. 53.
    Holmes, B., Page, A.R., and Good, R. A. Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J. Clin. Invest. 46: 1422, 1967.CrossRefGoogle Scholar
  54. 54.
    Baehner, R. L., and Nathan, D. G. Quantitative nitroblue tetrazolium test in chronic granulomatous disease. New Eng. J. Med. 278: 971, 1968.Google Scholar
  55. 55.
    Baehner, R. L., and Karnovsky, M. L. Deficiency of reduced nicotinamide adenine dinucleotide oxidase in chronic granulo-matous disease. Science 162: 1277, 1968.CrossRefGoogle Scholar
  56. 56.
    Klebanoff, S. J., and White, L. R. Iodinating defect in the leukocytes of a patient with chronic granulomatous disease of childhood. New Eng. J. Med. 280: 460, 1969.Google Scholar
  57. 57.
    Hirsch, J. G. Further studies on preparation and properties of phagocytin. J. Exp. Med. 111: 323, 1969.Google Scholar
  58. 58.
    Skarnes, R. C., and Watson, D. W. Antimicrobial factors of normal tissues and fluids. Bact. Rev. 21: 273, 1957.Google Scholar
  59. 59.
    Baehner, R. L., Karnovsky, M. T., and Nathan, D. G. Correction of metabolic deficiencies in chronic granulomatous disease. J. Clin. Invest. In press.Google Scholar
  60. 60.
    Mandell, G. L., Rubin, W., and Hook, E. W. Alteration of bactericidal activity of polymorphonuclear neutrophils by a NAHH oxidase inhibitor. J. Clin. Invest. 48: 55a, 1969 (abstract)Google Scholar
  61. 61.
    Quie, P. G., Kaplan, E. L., Page, A. R., Grusky, F. L., and Malawista, S. F. Defective polymorphonuclear leukocyte function and chronic granulomatous disease in two female children. New Eng. J. Med. 278: 976, 1968.CrossRefGoogle Scholar
  62. 62.
    Azimi, P., Bodenbender, J. G., Hintz, R. L., and Kontras, S. B. Chronic granulomatous disease in three sisters. Lancet 1: 208, 1968.CrossRefGoogle Scholar
  63. 63.
    Chandra, R. K., Cope, W. A., and Soothill, J. F. Chronic granulomatous disease. Evidence for an autosomal mode of inheritance. Lancet 2: 71, 1969.CrossRefGoogle Scholar
  64. 64.
    Windhorst, D. B., Holmes, B., and Good, R. A. Newly defined X-linked trait in man with demonstration of Lyon effect in carrier females. Lancet 1: 737, 1967.CrossRefGoogle Scholar
  65. 65.
    Windhorst, D. B. Inheritance of chronic granulomatous disease. Lancet 2: 543, 1969.CrossRefGoogle Scholar
  66. 66.
    Edwards, J. H. Inheritance of chronic granulomatous disease. Lancet 2: 850, 1969.CrossRefGoogle Scholar
  67. 67.
    Douglas, S. D., Davis, W. C., and Fudenberg, H. H. Inheritance of chronic granulomatous disease. Lancet 2: 851, 1969.Google Scholar
  68. 68.
    Windhorst, D. B., Holmes, B. and Good, R. A. A newly defined X-linked trait in man with demonstration of the Lyon effect in carrier females. Lancet 1: 737, 1967.CrossRefGoogle Scholar
  69. 69.
    Davis, W. C., Douglas, S. D., and Fudenberg, H. H. A selective neutrophil dysfunction syndrome: Impaired killing of Staphylococci. Ann. Intern. Med. 69: 1237, 1968.Google Scholar
  70. 70.
    Good, R. A., Quie, P. G., Windhorst, D. B., Page, A. R., Roddy, G. E., White, J., Wolfson, J. J., and Holmes, B. Fatal (chronic) granulomatous disease of childhood: A hereditary defect of leukocyte function. Seminars Hemat. 5: 215, 1968.Google Scholar
  71. 71.
    Pearse, A. G. E. Histochemistry, theoretical and applied. Second Edition. Little,Brown and Co., Boston 1960, p. 538.Google Scholar
  72. 72.
    Baehner, R. L. Personal communication.Google Scholar
  73. 73.
    Karnovsky, M. L. Metabolic basis of phagocytic activity. Physiol. Rev. 42: 143, 1962.Google Scholar
  74. 74.
    Rossi, F., and Zatti, M. Biochemical aspects of phagocytosis in polymorphonuclear leukocytes. NADH and NADPH oxidation by the granules of resting and phagocytizing cells. Experientia 20: 21, 1964.CrossRefGoogle Scholar
  75. 75.
    Douglas, S. D., Davis, W. C., and Fudenberg, H. H. Granulocytopathies: Pleomorphism of neutrophil dysfunction. Amer. J. Med. 46: 901, 1969.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • David G. Nathan
    • 1
  • Robert L. Baehner
    • 1
  1. 1.Division of Hematology of the Department of Medicine Children’s Hospital Medical Center, Department of PediatricsHarvard Medical SchoolBostonUSA

Personalised recommendations