The Metabolism and Function of Red Cells with Inherited Defects

  • Alan S. Keitt


In essence a red cell comprises three interacting components: a concentrated solution of hemoglobin, an intracellular metabolic apparatus, and a limiting membrane. Primary defects of genetic origin have been recognized in each of these cell systems with increasing frequency. The metabolic pathways of the red cell serve to maintain its hemoglobin and its membrane in a state of optimal function. Therefore, primary metabolic disorders such as glycolytic enzyme defects transmit their pathologic effects through alterations in the membrane, in hemoglobin or in both at once. Membrane lesions may result from defects anywhere within this system and are clinically manifest as hemolytic anemias. The molecular nature of the primary membrane disorders of the red cell and the exact mechanisms by which defects in glycolytic metabolism affect membrane function remain incompletely understood. The importance of hemoglobin precipitation in the genesis of membrane lesions has recently been elucidated and will be described subsequently. In most of these disorders the spleen, although not necessarily the terminal site for red cell destruction may modify the circulating red cells and affects cell survival to a variable degree.


Hemolytic Anemia Pyruvate Kinase Enzyme Defect Hexokinase Activity Glycolytic Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weatherall, D. J. Polycythemia resulting from abnormal hemoglobins. New Eng. J. Med. 280: 604, 1969.CrossRefGoogle Scholar
  2. 2.
    Charache, S., D. J. Weatherall, and J. B. Clegg. Polycythemia associated with a hemoglobinopathy. J. Clin. Invest. 45: 813, 1966.CrossRefGoogle Scholar
  3. 3.
    Stamatoyannopoulos, G., J. P. Parer and C. A. Finch. Physiologic implications of a hemoglobin with decreased oxygen affinity (hemoglobin Seattle). New Eng. J. Med. 281: 915, 1969.CrossRefGoogle Scholar
  4. 4.
    Reissmann, K. R., W. E. Ruth, T. Nomura. A human hemoglobin with lowered oxygen affinity and impaired heme-heme interactions. J. Clin. Invest. 40: 1826, 1961.CrossRefGoogle Scholar
  5. 5.
    Benesch, R. and R. E. Benesch. The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem. Biophys. Res. Comm. 26: 162, 1967.CrossRefGoogle Scholar
  6. 6.
    Chanutin, A. and R. R. Curnish. The effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch. Biochem. Biophys. 121: 96, 1967.CrossRefGoogle Scholar
  7. 7.
    Tanaka, K. R., W. N. Valentine and S. Miwa. Pyruvate kinase (PK) deficiency hereditary nonspherocytic hemolytic anemia. Blood. 19: 267, 1962.Google Scholar
  8. 8.
    Schneider, A. S., W. N. Valentine, M. Hattori, and N. L. Heinz, Jr. Hereditary hemolytic anemia with triose phosphate isomerase deficiency. New Eng. J. Med. 272: 229, 1965.CrossRefGoogle Scholar
  9. 9.
    Sehröter, W. Kongenitale nictspärocytäre hâmolytische Anämie bie 2,3-diphosphoglyceratmutase-Mangel der erythrocyten im frühen Säuglingsalter. Klin. Wchnschr. 43: 1147, 1965.CrossRefGoogle Scholar
  10. 10.
    Baughan, M. A., W. N. Valentine, D. E. Paglia, P. O. Ways, E. R. Simon and Q. B. DeMarsh. Hereditary hemolytic anemia associated with glucose phosphate isomerase (GPI) deficiency -a new enzyme defect of human erythrocytes. Blood. 32: 236, 1968.Google Scholar
  11. 11.
    Valentine, W. N., F. A. Oski, D. E. Paglia, M. A. Baughan, A. F. Schneider, and J. L. Naiman. Hereditary hemolytic anemia with hexokinase deficiency. The role of hexokinase in erythrocyte aging. New Eng. J. Med. 276: 1, 1967.CrossRefGoogle Scholar
  12. 12.
    Valentine, W. N., H. Hsieh, D. E. Paglia, H. M. Anderson, M. A. Baughan, E. R. Jaffe, and O. M. Garson. Hereditary hemolytic anemia associated with phosphoglycerate kinase deficiency in erythrocytes and leukocytes. A probable X-chromosome linked syndrome. New Eng. J. Med. 280: 528, 1969.CrossRefGoogle Scholar
  13. 13.
    Waterbury, L. and E. P. Frenkel. Phosphofructokinase deficiency in congenital nonspherocytic hemolytic anemia. Clin. Res. 17: 347, 1969.Google Scholar
  14. 14.
    Oliveira, M. M. and M. Vaughan. Incorporation of fatty acids into phospholipids of erythrocytic membranes. J. Lipid Research. 5: 156, 1964.Google Scholar
  15. 15.
    Nakao, M., T. Nakao and S. Yamazoe and H. Yoshikawa. Adenosine triphosphate and shape of erythrocytes. J. Biochem. (Tokyo) 49: 487, 1961Google Scholar
  16. 16.
    Haradin, A., R. I. Weed and C. F. Reed. Changes in physical properties of stored erythrocytes: relation to in vivo survival. Blood. 30: 876, 1967.Google Scholar
  17. 17.
    Zuelzer, W. D., A. R. Robinson and T. H. J. Hsu. Erythrocyte pyruvate kinase deficiency in non-spherocytic hemolytic anemia: a system of multiple genetic markers? Blood. 32: 33, 1968.Google Scholar
  18. 18.
    Twomey, J. J., F. B. O’Neal, C. P. Alfrey and R. H. Moser. ATP metabolism in pyruvate kinase deficient erythrocytes. Blood. 30: 576, 1967.Google Scholar
  19. 19.
    Keitt, A. S. Hemolytic anemia with impaired hexokinase activity. J. Clin. Invest. 48: 1997, 1969.Google Scholar
  20. 20.
    Ohyama, H. and S. Minakami. Studies on erythrocyte glycolysis V. change of the glycolytic intermediate pattern of reticulocytes during maturation. J. Biochem. (Tokyo) 61: 103, 1967.Google Scholar
  21. 21.
    Oski, F. A. and H. Bowman. A low Km phosphoenolpyruvate mutant in the Amish with red cell pyruvate kinase deficiency. Brit. J. Haemat. 17: 289, 1969.CrossRefGoogle Scholar
  22. 22.
    Rose, I. A. and E. L. O’Connell. The role of glucose 6-phosphate in the regulation of glucose metabolism in human erythrocytes. J. Biol. Chem. 239: 12, 1964.Google Scholar
  23. 23.
    Schneider, A. S., I. Dunn, K. H. Ibsen, and I. M. Weinstein. Inherited triosephosphate isomerase deficiency B. Erythrocyte carbohydrate metabolism and preliminary studies of the erythrocyte enzyme. in Hereditary Disorders of Erythrocyte Metabolism. Ed. E. Beutler, Grune and Stratton, 1968.Google Scholar
  24. 24.
    Rose, I. A. and J. V. B Warms. Control of glycolysis in the human red blood cell. J. Biol. Chem. 241: 4848, 1966.Google Scholar
  25. 25.
    Busch, D., Probleme des erythrozytenstoffwechsels bei Anamien mit Pyruvatkinasemangel. Folia Haemat. 83: 395, 1965.Google Scholar
  26. 26.
    Jacobasch, G., I. Syllm-Rapoport, H. Scharfschwerdt, F. M. G. Otto, and H. Pester. Pyruvatkinasemangel und einige Probleme der Glykolyseregulierung. Folia Haemat. 83: 407, 1965.Google Scholar
  27. 27.
    Cartier, P., A. Najman, J. P. Leroux and H. Temkine. Les anomalies de la glycolyse au cours de l’anémie hémolytique par déficit du globule rouge en pyruvate kinase. Clin. Chim. Acta. 22: 165, 1968.CrossRefGoogle Scholar
  28. 28.
    Eaton, J. and G. Brewer. The relationship between red cell 2,3 diphosphoglycerate and levels of hemoglobin in the human. Proc. Nat. Acad. Sci. 61: 756, 1968.CrossRefGoogle Scholar
  29. 29.
    Keitt, A. S. Pyruvate kinase deficiency and related disorders of red cell glycolysis. Am. J. Med. 41: 762, 1966.CrossRefGoogle Scholar
  30. 30.
    Grimes, A. J., A. Meisler, and J. V. Dacie. Hereditary nonspherocytic haemolytic anaemia. A study of red cell carbohydrate metabolism in 12 cases of pyruvate-kinase deficiency. Brit. J. Haemat. 10: 403, 1964.CrossRefGoogle Scholar
  31. 31.
    Brewer, G. J. Erythrocyte metabolism and function: hexokinase inhibition by DPG and interaction with ATP and Mg++. Clin. Res. 17: 320, 1969.Google Scholar
  32. 32.
    Zurcher, C., J. A. Loos, and H. K. Prins. Hereditary high ATP content of human erythrocytes. Folia Haemat. 83: 336, 1965.Google Scholar
  33. 33.
    Guest, G. M. and S. Rapoport. Clinical studies of the organic acid-soluble phosphorous of red blood cells in different acidotic states. J. Lab. Clin. Med. 26: 190, 1940.Google Scholar
  34. 34.
    Rose, I. A. The state of magnesium in red cells as estimated from the adenylate kinase. Proc. Nat. Acad. Sci. 61: 1079–86, Nov. 1968.CrossRefGoogle Scholar
  35. 35.
    Tanaka, K. R. and W. N. Valentine. Pyruvate kinase deficiency in: Hereditary Disorders of Erythrocyte Metabolism. Ed. E. Beutler, Grune & Stratton, 1968.Google Scholar
  36. 36.
    Necheles, T. F., H. E. Finkel, R. G. Sheehan and D. M. Allen. Red cell pyruvate kinase deficiency: effect of spl enectomy. Arch. Int. Med. 118: 75, 1966.Google Scholar
  37. 37.
    Paglia, D. E., PHolland, M. A. Baughan and W. N. Valentine. Occurrence of defective hexosemonophosphate isomeri zation in human erythrocytes and leukocytes. New Eng. J. Med. 280: 66, 1969.CrossRefGoogle Scholar
  38. 38.
    Bowman, H. S. and F. Procopio. Hereditary non-sphcrocytic hemolytic anemia of the pyruvate-kinase deficient type. Ann. Int. Med. 58: 567, 1963.Google Scholar
  39. 39.
    Mallarme, J., P Boivin, and J. L. Gerbeaux. L’Anemie hemolytique congenitale non spherocytaire par deficit en pyruvatekinase. Bull. et Mem. Soc. Med. d hop. de Paris 115: 483, 1964.Google Scholar
  40. 40.
    Collier, H. B., D. R. Ashford and R. E. Bell. Three cases of hemolytic anemia with erythrocyte pyruvate kinase deficiency in Alberta. Canad. Med. Assoc. J. 95: 1188, 1966.Google Scholar
  41. 41.
    Nathan, D. G., F. A. Oski, D. R. Miller and F. H. Gardner. Life-span and organ sequestration of the red cells in pyruvate kinase deficiency. New Eng. J. Med. 278: 73, 1968.CrossRefGoogle Scholar
  42. 42.
    Berendes, M. The proportion of reticulocytes in the erythrocytes of the spleen as compared with those of the circulating blood with special reference to hemolytic states. Blood. 14: 558, 1959.Google Scholar
  43. 43.
    Jandl, J. H. The agglutination and sequestration of immature red cells. J. Lab Clin. Med. 55: 663, 1960.Google Scholar
  44. 44.
    Lenfant, C., J. Torrance, E. English, C. A. Finch, C. Reynafarje, J. Ramos and J. Faura. Effect of altitude on oxygen binding by hemoglobin and on organic phosphate levels. J. Clin. Invest. 47: 2652, 1968.CrossRefGoogle Scholar
  45. 45.
    Delivoria-Papadopoulos, M., F. A. Oski and A. J. Gottleib. Oxygen hemoblogin dissociation curves: Effect of inherited enzyme defects of the red cells. Science 165: 601, 1969.CrossRefGoogle Scholar
  46. 46.
    Nathan, D. G. and R. B. Gunn. Thalassemia: The consequences of unbalanced hemoglobin synthesis. Am. J. Med. 41: 815, 1966.CrossRefGoogle Scholar
  47. 47.
    Jacob, H. S., M. C. Brain, J. V. Dacie, R. W. Carrell and H. Lehmann. Abnormal haem binding and globin SFI group blockade in unstable haemoglobins. Nature 218: 1214, 1968.CrossRefGoogle Scholar
  48. 48.
    Beutler, E., R. J. Dern and A. S. Alving. The hemolytic effect of primaquine. VI. an in vitro test for sensitivity of ery- throcytes to primaquine. J. Lab. Clin. Med. 45: 40, 1955.Google Scholar
  49. 49.
    Brewer, G. J. and R. J. Dern. A new inherited enzymatic deficiency of human erythrocytes: 6-phosphogluconate dehydrogenase deficiency. Amer. J. Plum. Genet. 16: 472, 1964.Google Scholar
  50. 50.
    Desforges, J. F., W. W. Thayer and J. P. Dawson. Hemolytic anemia induced by sulfoxone therapy, with investigations into the mechanisms of its production. Amer. J. Med. 27: 132, 1959.CrossRefGoogle Scholar
  51. 51.
    Oort, M., J. A. Loos and H. K. Prins. Hereditary absence of reduced glutathione in the erythrocytes - a new clinical and biochemical entity? Vox. Sang. 6: 370, 1961.CrossRefGoogle Scholar
  52. 52.
    Necheles, T. F., N. Maldonado, A. Barquet-Chediak, and D. M. Allen. Homozygous erythrocyte glutathione-peroxidase deficiency: Clinical and biochemical studies. Blood. 33: 164, 1969.Google Scholar
  53. 53.
    Bunn, H. F. and J. H. Jandl. Exchange of heme among hemoglobins and between hemoglobin and albumin. J. Biol. Chem. 243: 465, 1968.Google Scholar
  54. 54.
    Perutz, M. F. and H. Lehmann. Molecular pathology of human haemoglobin. Nature. 219: 902, 1968.CrossRefGoogle Scholar
  55. 55.
    Rifkind, R. A. Heinz body anemia - an ultrastructural study. I. Heinz body formation. Blood 25: 885, 1965.Google Scholar
  56. 56.
    Carrell, R. W. and H. Lehmann. The unstable haemoglobin haemolytic anaemias. Sem. Hemat. 6: 116, 1969.Google Scholar
  57. 57.
    Perutz, M. F., H. Muirhead, J. M. Cox, and L. C. G. Goaman. Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8°A resolution. The atomic model. Nature 219: 131, 1968.CrossRefGoogle Scholar
  58. 58.
    Carrell, R. W., H. Lehmann, and H. E. Hutchison. Haemoglobin Köln (98 valine-o-methionine): an unstable protein causing inclusion body anaemia. Nature 210: 915, 1966.CrossRefGoogle Scholar
  59. 59.
    Grimes, A. J., H. Meisler and J. V. Dacie. Congenital Heinz-body anaemia. Brit. J. Haemat. 10: 281, 1964.CrossRefGoogle Scholar
  60. 60.
    Vaughan, Jones, R., A. J. Grimes, R. W. Carrell, and H. Lehmann. Köln Haemoglobinopathy. Further data and a comparison with other hereditary Heinz bodies anaemias. Brit. J. Haemat. 13: 394, 1967.Google Scholar
  61. 61.
    Mills, G. C., W. C. Levin, and J. B. Alperin. Hemolytic anemia associated with low erythrocyte ATP. Blood 32: 15, 1968.Google Scholar
  62. 62.
    Jacob, H. S., M. C. Brain and J. V. Dacie. Altered suflhydryl reactivity of hemoglobins and red blood cell membranes in con-Genital Heinz body hemolytic anemia. J. Clin. Invest. 47: 2664, 1968.CrossRefGoogle Scholar
  63. 63.
    Jacob, H. S. and J. H. Jandl. Effects of sulfhydryl inhibition on red blood cells. I. Mechanism of hemolysis. J. Clin. Invest. 41: 779, 1962.CrossRefGoogle Scholar
  64. 64.
    Nathan, D. G., T. B. Stossel, R. B. Gunn, H. S. Zarkowsky and M. T. Laforet. Influence of hemoglobin precipitation on erythrocyte metabolism in alpha and beta thalassemia. J. Clin. Invest. 48: 33, 1969.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • Alan S. Keitt
    • 1
  1. 1.University of Florida College of MedicineGainesvilleUSA

Personalised recommendations