Liquid Disorder Effects on the Solid He II Kapitza Resistance

  • C. Linnet
  • T. H. K. Frederking
  • R. C. Amar


At temperatures T below the λ-point T < T λ , several Kapitza resistance results R KT −3 indicate phonon transmission difficulties and provide some support for acoustic mismatch models (proposed in the past and reviewed in Ref. 1) and for more recent modifications2–4 of the early models. Some measurements, however, show departures from the T −3 law, particularly at increased heat fluxes q. The departures appear to be consistent with some aspects of early thermohydrodynamic theories of the solid-He II Kapitza resistance5,6; however, the He II contributions appear to be very small and outside of the error limits of early data. More recent experiments indicate that the liquid He II temperature difference ΔT may cause noticeable departures from phonon transmission laws at large heat fluxes. Then the liquid contribution to the entire Kapitza temperature “drop” may reach several percent. Therefore we have conducted experiments at heat fluxes of the order of magnitude 0.5–5 W cm−2 with the purpose of resolving further details of the liquid He II thermohydrodynamic aspects of the solid-He II Kapitza resistance.


Heat Flux Normal Fluid Increase Heat Flux Kapitza Resistance Phonon Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Pollack, Rev. Mod. Phys. 41, 48 (1969);ADSCrossRefGoogle Scholar
  2. N.S. Snyder, Cryogenics 10, 89 (1970).Google Scholar
  3. 2.
    M. Vuorio, J. Phys. C 5, 1216 (1972).ADSCrossRefGoogle Scholar
  4. 3.
    H. Haug and K. Weiss, Phys. Lett. 40A, 19 (1972).CrossRefGoogle Scholar
  5. 4.
    R.E. Peterson and A.C. Anderson, Sol. St. Comm. 10, 891 (1972).ADSCrossRefGoogle Scholar
  6. 5.
    R. Kronig, in Proc. 2nd Intern. Conf. Low Temp. Phys., 1951, Oxford, England, p. 99;Google Scholar
  7. R. Kronig and A. Thellung, Physica 18, 749 (1952).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 6.
    C.J. Gorter, K.W. Taconis, and J.J.M. Beenakker, Physica 17, 841 (1951).ADSMATHCrossRefGoogle Scholar
  9. 7.
    R. Eaton, W.D. Lee, and F.J. Agee, Phys. Rev. A5, 1342 (1972).ADSCrossRefGoogle Scholar
  10. 8.
    J.E. Broadwell and H. Liepmann, Phys. Fluids 12, 1533 (1972).ADSCrossRefGoogle Scholar
  11. 9.
    C. Linnet, Ph.D. Thesis, Univ. of California at Los Angeles, 1971.Google Scholar
  12. 10.
    G. Ahlers, Phys. Rev. Lett. 22, 54 (1969).ADSCrossRefGoogle Scholar
  13. 11.
    R.C. Chapman, J. Low Temp. Phys. 4, 485 (1971);Google Scholar
  14. R.L. Haben, R.A. Madsen, A.C. Leonard, and T.H.K. Frederking, Adv. Cryog. Eng. 17, 323 (1972).Google Scholar
  15. 12.
    C.J. Gorter and J.H. Mellink, Physica 15, 285 (1949).ADSCrossRefGoogle Scholar
  16. 13.
    K.R. Atkins, Liquid Helium, Cambridge Univ. Press, Cambridge (1959), p. 102.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • C. Linnet
    • 1
  • T. H. K. Frederking
    • 1
  • R. C. Amar
    • 1
  1. 1.School of Engineering and Applied ScienceUniversity of CaliforniaLos AngelesUSA

Personalised recommendations