Torque on a Rayleigh Disk Due to He II Flow

  • W. J. Trela
  • M. Heller


The Rayleigh disk has been used in several experiments1–7 to probe the local velocity field of He II. However, the flow pattern around the disk has not been well understood.8 We present here a simple model for He II flow past a Rayleigh disk which assumes that superfluid potential flow and normal fluid Helmholtz flow occur. A torque which increases as the temperature decreases below T λ is predicted. New measurements of the torque on a Rayleigh disk in nonrotating helium are then presented which are in substantial agreement with this model. Finally, we show that our model is in agreement with Pellam’s Rayleigh disk measurements1–4 in rotating helium below T λ .


Potential Flow Attack Angle Normal Fluid Superfluid Component Torque Increase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.R. Pellam, Phys. Rev. Lett. 5, 189 (1960).ADSCrossRefGoogle Scholar
  2. 2.
    J.R. Pellam, in Proc. 9th Intern. Conf. Low Temp. Phys., 1964, Plenum, New York (1965), p. 191.Google Scholar
  3. 3.
    J.R. Pellam, Phys. Rev. Lett. 20, 1144 (1968).ADSCrossRefGoogle Scholar
  4. 4.
    J.R. Pellam, Phys. Rev. Lett. 27, 88 (1971).ADSCrossRefGoogle Scholar
  5. 5.
    D.S. Tsakadze and L.G. Shanshiashvilli, Zh. Eksperim, i Teor. Fiz. Pis’ma 2 305 (1965) [Soviet Phys.—JETP Lett. 2 194 (1965)].Google Scholar
  6. 6.
    J.R. Pellam, in Progress in Low Temperature Physics, C.J. Gorter, ed., North-Holland, Amsterdam (1955), Vol. 1, p. 54.Google Scholar
  7. 7.
    T.R. Koehler and J.R. Pellam, Phys. Rev. 125, 791 (1962).ADSCrossRefGoogle Scholar
  8. 8.
    P.P. Craig, Phys. Rev. Lett. 13, 708 (1964).ADSCrossRefGoogle Scholar
  9. 9.
    P.P. Craig and J.R. Pellam, Phys. Rev. 108, 1109 (1957).ADSCrossRefGoogle Scholar
  10. 10.
    H. Lamb, Hydrodynamics, 6th ed., Cambridge Univ. Press, Cambridge (1932), p. 86.MATHGoogle Scholar
  11. 11.
    A. Sommerfeld, Mechanics of Deformable Bodies, Academic, New York (1950), p. 215.MATHGoogle Scholar
  12. 12.
    T.A. Kitchens, W.A. Steyert, R.D. Taylor, and P.P. Craig, Phys. Rev. Lett. 14, 942 (1965).ADSCrossRefGoogle Scholar
  13. 13.
    W.J. Trela, Phys. Rev. Lett. 29, 41 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • W. J. Trela
    • 1
  • M. Heller
    • 1
  1. 1.Department of PhysicsHaverford CollegeHaverfordUSA

Personalised recommendations