Mass Transport of 4He Films Adsorbed on Graphite

  • J. A. Herb
  • J. G. Dash


Thin 4He films adsorbed on various substrates have superfluid onset temperatures T 0 which vary with film thickness (or relative pressure P/ P 0) in a regular manner, so that results of a large number of different studies fall on a common curve of T 0 vs. P/P 0.1–3 Because of this it has been felt that the understanding of onset phenomena need not include details of the substrate interaction (or at least that all substrates can be considered identical.4 Recently some experiments5–8 using different substrates have yielded slightly higher T 0 values, suggesting that superflow onset is substrate influenced in multilayer films. This conjecture is supported by our current studies of flow on graphite, which, according to recent heat capacity data,9–11 is a manifestly more uniform surface. We report here a complex of “onset” phenomena which have not been seen in films on typical substrates.


Basal Plane Multilayer Film Graphite Surface Common Curve Exit Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Fokkens, K.W. Taconis, and R. De Bruyn Ouboter, Physica 32, 2129 (1966).ADSCrossRefGoogle Scholar
  2. 2.
    R.P. Henkel, G. Kukich, and J.D. Reppy, in Proc. 11th Intern. Conf. Low Temp. Phys., 1968, St. Andrews Univ. Press, Scotland (1969).Google Scholar
  3. 3.
    K.R. Atkins and I. Rudnick, Progress in Low Temperature Physics,C.J. Gorter, ed. North-Holland, Amsterdam (1970), Vol. 6.Google Scholar
  4. 4.
    D.F. Brewer, J. Low Temp. Phys. 3, 205 (1970).ADSCrossRefGoogle Scholar
  5. 5.
    C.H. Anderson and E.S. Sabisky, Phys. Rev. Lett. 24, 1049 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    B.L. Blackford, Phys. Rev. Lett. 28, 414 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    M. Chester, L.C. Yang, and J.B. Stephens, Phys. Rev. Lett. 29, 211 (1972).ADSCrossRefGoogle Scholar
  8. 8.
    H.W. Chan, A.W. Yanof, F.D.M. Pobell, and J.D. Reppy, this volume.Google Scholar
  9. 9.
    M. Bretz and J.G. Dash, Phys. Rev. Lett. 26, 963; 27, 647 (1971).ADSCrossRefGoogle Scholar
  10. 10.
    M. Bretz, G.B. Huff, and J.G. Dash, Phys. Rev. Lett. 28, 729 (1972).ADSCrossRefGoogle Scholar
  11. 11.
    D.C. Hickernell, E.O. McLean, and O.E. Vilches, Phys. Rev. Lett. 28, 789 (1972).ADSCrossRefGoogle Scholar
  12. 12.
    F. Pollack, H. Logan, J. Hobgood, and J.G. Daunt, Phys. Rev. Lett. 28, 346 (1972).ADSCrossRefGoogle Scholar
  13. 13.
    A. Thorny and X. Duval, J. Chim. Phys. (Paris) 66, 1966 (1969); 67, 286, 1101 (1970).Google Scholar
  14. 14.
    N.N. Roy and G.D. Halsey, Jr., J. Low Temp. Phys. 4, 231 (1971).ADSCrossRefGoogle Scholar
  15. 15.
    E. Long and L. Meyer, Phys. Rev. 85, 1030 (1952).ADSCrossRefGoogle Scholar
  16. 16.
    J.E. Crow, R.S. Thompson, M.A. Klenig, and A.K. Bhatnagar, Phys. Rev. Leu. 24, 371 (1970).ADSCrossRefGoogle Scholar
  17. 17.
    T.H. Geballe, A. Menth, F.J. Di Salvo, and F.R. Gamble, Phys. Rev. Leu. 27, 314 (1971).ADSCrossRefGoogle Scholar
  18. 18.
    R.F. Frindt, Phys. Rev. Lett. 28, 299 (1972).ADSCrossRefGoogle Scholar
  19. 19.
    P.A. Lee and M.G. Payne, Phys. Rev. Lett. 26, 1537 (1971).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • J. A. Herb
    • 1
  • J. G. Dash
    • 1
  1. 1.Department of PhysicsUniversity of WashingtonSeattleUSA

Personalised recommendations