Advertisement

Mean Free Path Effects in 3He Quasiparticles: Measurement of the Spin Diffusion Coefficient in the Collisionless Regime by a Pulsed Gradient NMR Technique

  • D. F. Brewer
  • J. S. Rolt

Abstract

The low-temperature properties of bulk liquid 3He are broadly consistent with Landau quasiparticle theory although they do not, in a precise sense, verify its correctness. The temperature dependence in the limit T→0 is that predicted for any Fermi system, and the magnitude of the coefficients cannot be calculated explicitly. Moreover, accurate comparison of the temperature variations below 50 m°K, where it is most significant, is made doubtful by uncertainties in the temperature scale. We report here the results of an experiment of a different sort, namely the direct observation of mean free path effects in the quasiparticles. The present measurements are of the spin diffusion coefficient of 3He confined to narrow channels at temperatures low enough for the quasiparticles to be in the collisionless regime. Our results are in agreement with modified Landau theory which does not involve the usual temperature-dependent mean free path.1 In these experiments the bulk and the mean-free-path-limited diffusion coefficients can be measured virtually coextensively and simultaneously, which greatly facilitates their direct comparison. A similar experiment on heat conduction has already been reported.2

Keywords

Diffusion Coefficient Pulse Gradient Measured Diffusion Coefficient Bulk Diffusion Coefficient Oscillate Quartz crystalS 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Rice, Phys. Rev. 165, 288 (1968).ADSCrossRefGoogle Scholar
  2. 2.
    D. S. Betts, D. F. Brewer, and R. S. Hamilton, in Proc. 12th Intern. Conf. Low Temp. Phys., 1970, Academic Press of Japan, Tokyo(1971), p. 155.Google Scholar
  3. 3.
    D. F. Brewer and J. S. Rolt, Pit’s. Rev. Lett.: submitted also this volume.Google Scholar
  4. 4.
    A. C. Anderson, W. Reese, R. J. Sarwinski, and J. C. Wheatley, Phys. Rev. Lett. 7, 220 (1961).ADSCrossRefGoogle Scholar
  5. 5.
    E. O. Stejskal and J. E. Tanner, J. Chem. Phys. 42, 288 (1964)ADSCrossRefGoogle Scholar
  6. E. O. Stejskal, J. Chem. Phys. 43, 3597 (1965).ADSCrossRefGoogle Scholar
  7. 6.
    D. Basmadjian and K. P. Chu, Can. J. Chem. 42, 946 (1964).CrossRefGoogle Scholar
  8. 7.
    B. Robertson, Phys. Rev. 151, 273 (1966)ADSCrossRefGoogle Scholar
  9. R. C. Wayne and R. M. Cotts, Phys. Rev. 151, 264 (1966)ADSCrossRefGoogle Scholar
  10. J. E. Tanner and E. O. Stejskal, J. Chem. Phys. 49, 1768 (1968).ADSCrossRefGoogle Scholar
  11. 8.
    M. P. Bertinat, D. S. Betts, D. F. Brewer, and G. J. Butterworth, Phys. Rev. Lett. 28, 472 (1972).ADSCrossRefGoogle Scholar
  12. 9.
    W. R. Abel, A. C. Anderson, and J. C. Wheatley, Phys. Rev. Lett. 17, 74 (1966)ADSCrossRefGoogle Scholar
  13. B. M. Abraham, D. Chung, Y. Eckstein, J. B. Ketterson, and P. R. Roach, J. Low Temp. Phys. 6, 521 (1972).ADSCrossRefGoogle Scholar
  14. 10.
    J. C. Wheatley, Quantum Fluids, D. F. Brewer, ed., North-Holland, Amsterdam (1966), p. 206.Google Scholar
  15. 11.
    D.F. Brewer, D.J. Creswell, and A.L. Thomson, in Proc. 12th Intern. Conf. Low Temp. Phys., 1970, Academic Press of Japan, Tokyo (1971), p. 157.Google Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • D. F. Brewer
    • 1
  • J. S. Rolt
    • 1
  1. 1.School of Mathematical and Physical SciencesUniversity of SussexFalmer, Brighton, SussexEngland

Personalised recommendations