Advertisement

Submonolayer Isotopic Mixtures of Helium Adsorbed on Grafoil

  • S. V. Hering
  • D. C. Hickernell
  • E. O. McLean
  • O. E. Vilches

Abstract

Monolayers or submonolayers of helium adsorbed on different substrates have been studied for several years. Heat capacity signatures for He on rouge,1 Vycor,2 and bare and rare-gas-plated copper3–5 resemble those of two-dimensional (2D) Debye systems. Only recently measurements done on a commercially available variety of graphite, Grafoil,§ have given results that can be compared to 2D quantum and classical gases.6 Several prominent features have been reported in the range between 1/4 and 2/3 monolayer, mainly: (a) classical k/atom specific heats at 4°K; (b) peaks around 1.2°K appearing only for bosons (4He) at the lower coverages, assumed due to condensation induced by weak substrate lateral fields6,7; (c) peaks around 3°K occurring for coverages at which a well-defined fraction of the Grafoil lattice hexagons x G is occupied by He atoms (x G = 1/4 and x G = 1/3); (d) spin-ordering effects appearing for 3He at very low temperatures.8 Comparisons have been made with the properties of liquid and solid 3He and 4He, and it appears that 2D films on Grafoil have properties corresponding to those of the three-dimensional (3D) systems (see, e.g., a recent report on the melting line).9

Keywords

Mole Fraction Excess Entropy Pure Isotope Specific Heat Data Excess Specific Heat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. P. R. Frederikse, Physica 15, 860 (1949).ADSCrossRefGoogle Scholar
  2. 2.
    D. F. Brewer, J. Low Temp. Phys. 3, 205 (1970).ADSCrossRefGoogle Scholar
  3. 3.
    D. Princehouse, Ph. D. Thesis, Univ. of Washington, 1971, unpublished.Google Scholar
  4. 4.
    W. D. McCormick, D. L. Goodstein, and J. G. Dash, Phys. Rev. 168, 249 (1968).ADSCrossRefGoogle Scholar
  5. 5.
    G. A. Stewart and J. G. Dash, Phys. Rev. A2, 918 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    M. Bretz and J. G. Dash, Phys. Rev. Lett. 26, 963 (1971); 27, 647 (1971).Google Scholar
  7. 7.
    C. E. Campbell, J. G. Dash, and M. Schick, Phys. Rev Lett. 26, 966 (1971).ADSCrossRefGoogle Scholar
  8. 8.
    D. C. Hickernell, E. O. McLean, and O. E. Vilches, Phys. Rev. Lett. 28, 789 (1972).ADSCrossRefGoogle Scholar
  9. 9.
    M. Bretz, G. B. Huff, and J. G. Dash, Phys. Rev. Lett. 28, 729 (1972).ADSCrossRefGoogle Scholar
  10. 10.
    W. E. Keller, Helium-3 and Helium-4, Plenum, New York, (1969).Google Scholar
  11. 11.
    A. C. Anderson, W. R. Roach, R. J. Sarwinski, and J. C. Wheatley, Phys. Rev. Lett. 16, 263 (1966).ADSCrossRefGoogle Scholar
  12. 12.
    T. A. Alvesalo, P. M. Berglund, S. T. Islander, G. R. Pickett, and W. Zimmerman, Phys. Rev. A4, 2354 (1971).ADSCrossRefGoogle Scholar
  13. 13.
    D. O. Edwards, A. S. McWilliams, and J. G. Daunt, Phys. Rev. Lett. 9, 195 (1962).ADSCrossRefGoogle Scholar
  14. 14.
    A. E. Evenson, Thesis, Univ. of Sussex, 1968, unpublished.Google Scholar
  15. 15.
    D. F. Brewer, A. Evenson, and A. L. Thomson, Phys. Lett. 35A, 307 (1971).CrossRefGoogle Scholar
  16. 16.
    H. M. Guo, D. O. Edwards, R. E. Sarwinski, and J. T. Tough, Phys. Rev. Lett. 27, 1259 (1971).ADSCrossRefGoogle Scholar
  17. 17.
    E. O. McLean, Ph.D. Thesis, Univ. of Washington, 1972, unpublished.Google Scholar
  18. 18.
    D. C. Hickernell, Ph.D. Thesis, Univ. of Washington, 1972, unpublished.Google Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • S. V. Hering
    • 1
  • D. C. Hickernell
    • 1
  • E. O. McLean
    • 1
  • O. E. Vilches
    • 1
  1. 1.Department of PhysicsUniversity of WashingtonSeattleUSA

Personalised recommendations