Skip to main content

Light Scattering As a Probe of Liquid Helium

  • Chapter
Low Temperature Physics-LT 13

Abstract

Laser light sources and advances in optical spectrometers have made possible the use of inelastic light scattering as a probe of liquid helium. Pure 4He, pure 3He, and isotopic mixtures have been studied in several laboratories. The experiments fall into two categories: Brillouin and Raman scattering. Brillouin scattering measures the spectrum of the equilibrium density fluctuations which contains contributions from all the hydrodynamic modes of the liquid. The velocity and attenuation of high-frequency first and second sound have been obtained by this technique, and it is currently being used to study the dynamics of the critical regions associated with the lambda transition and with the tricritical point. Raman scattering gives information about the elementary excitations in the medium. These experiments have been used to measure roton linewidths, to demonstrate the existence of a bound state of two rotons, and to study optical phonons in solid helium.

Alfred P. Sloan Research Fellow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.A. Jakovlev, J. Phys. USSR 7, 307 (1943).

    Google Scholar 

  2. J.C. McLennan, H.D. Smith, and J.O. Wilhelm, Phil. Mag. 14, 161 (1932).

    Google Scholar 

  3. V.L. Ginsburg, J. Physics (Moscow) 7, 305 (1943).

    Google Scholar 

  4. A.W. Lawson and Lothar Meyer, Phys. Rev. 93, 259 (1954).

    Article  ADS  Google Scholar 

  5. H.Grimm and K. Dransfeld, Z. Naturforsch. 22A, 1629 (1967).

    ADS  Google Scholar 

  6. L.P. Gorkov and L.P. Pitaevskii, Soviet Phys.—JETP 33, 486 (1958).

    ADS  Google Scholar 

  7. A.A. Abrikosov and I.M. Khalatnikov, Soviet Phys.—JETP 34, 135 (1958).

    MathSciNet  Google Scholar 

  8. B.N. Ganguly and A. Griffin, Can. J. Phys. 46, 1895 (1968).

    Article  ADS  Google Scholar 

  9. A. Griffin, Can. J. Phys. 47, 429 (1969).

    Article  ADS  Google Scholar 

  10. B.N. Ganguly, Phys. Lett. 29A, 234 (1969).

    Article  Google Scholar 

  11. W.F. Vinen, in Physics of Quantum Fluids (Tokyo Summer Lectures in Theoretical and Experimental Physics, 1970, R. Kubo and F. Tanako, eds.), Syokabo, Tokyo, Japan.

    Google Scholar 

  12. B.N. Ganguly, Phys. Rev. Lett. 26, 1623 (1971);

    Article  ADS  Google Scholar 

  13. Phys. Lett. 39A, 11 (1972); W.F. Vinen, J. Phys. C 4, L287 (1971).

    Google Scholar 

  14. W.F. Vinen, J. Phys. C 4, L287 (1971).

    Google Scholar 

  15. R.L. St. Peters, T.J. Greytak, and G.B. Benedek, Bull. Am. Phys. Soc. 13, 183 (1968); Opt. Comm. 1, 412 (1970).

    Article  ADS  Google Scholar 

  16. E.R. Pike, J.M. Vaughan, and W.F. Vinen, J. Phys. C3, L40 (1970).

    Google Scholar 

  17. E.R. Pike, J. Physique 33, C1–25 (1972).

    Article  Google Scholar 

  18. R.A. Ferrell, N. Menyhàrd, H. Schmidt, F. Schwabl, and P. Szépfalusy, Ann. Phys. (N.Y.) 47, 565 (1968).

    Article  ADS  Google Scholar 

  19. G. Winterling, F. Holmes, and T. Greytak, this volume.

    Google Scholar 

  20. E.R. Pike, J.M. Vaughan, and W.F. Vinen, Phys. Lett. 30A, 373 (1969).

    Article  Google Scholar 

  21. C.J. Palin, W.F. Vinen, E.R. Pike, and J.M. Vaughan, J. Phys. C 4, L225 (1971).

    Article  ADS  Google Scholar 

  22. R.F. Benjamin, D.A. Rockwell, and T.J. Greytak, this volume.

    Google Scholar 

  23. T.J. Greytak and G.B. Benedek, Phys. Rev. Lett. 17, 179 (1966).

    Article  ADS  Google Scholar 

  24. D.R. Watts, W.I. Goldburg, L.D. Jackel, and W.W. Webb, J. Physique 33, C1–155 (1972); D.R. Watts and W.W. Webb, this volume.

    Google Scholar 

  25. M.A. Woolf, P.M. Platzman, and M.G. Cohen, Phys. Rev. Lett. 17, 294 (1966).

    Article  ADS  Google Scholar 

  26. W. Heinicke, G. Winterling, and K. Dransfeld, Phys. Rev. Lett. 22, 170 (1969).

    Article  ADS  Google Scholar 

  27. G. Jacucci and G. Signorelli, Phys. Lett. 26A, 5 (1967).

    Article  Google Scholar 

  28. S. Cunsolo, G. Grillo, and G. Jacucci, in Proc. 12th Intern. Conf. Low Temp. Phys., Kyoto, 1970, Academic Press of Japan, Tokyo, (1971).

    Google Scholar 

  29. D. Petrac and M.A. Woolf, Phys. Rev. Lett. 28, 283 (1972).

    Article  ADS  Google Scholar 

  30. J.W. Halley, Bull. Am. Phys. Soy. 13, 398 (1968); Phys. Rev. 181, 338 (1969).

    Article  ADS  Google Scholar 

  31. M.J. Stephen, Phys. Rev 187, 279 (1969).

    Article  ADS  Google Scholar 

  32. T.J. Greytak and J. Yan, Phys. Rev. Leu. 22, 987 (1969); in Proc. 12th Intern. Conf. Low Temp. Phys. Kyoto, 1970, ( Academic Press of Japan, Tokyo, 1971 ).

    Google Scholar 

  33. J. Ruvalds and A. Zawadowski, Phys. Rev. Lett. 25, 333 (1970).

    Article  ADS  Google Scholar 

  34. F. Iwamoto, Prog. Theor. Phys. (Japan) 44, 1135 (1970).

    Article  ADS  Google Scholar 

  35. T.J. Greytak, R. Woerner, J. Yan, and R. Benjamin, Phys. Rev. Lett. 25, 1547 (1970).

    Article  ADS  Google Scholar 

  36. A. Zawadowski, J. Ruvalds, and J. Solana, Phys. Rev. A 5, 399 (1972).

    Article  ADS  Google Scholar 

  37. J. Solana, V Celli, J. Ruvalds, I. Tüttö, and A. Zawadowski, to be published.

    Google Scholar 

  38. J. Yan and M.J. Stephen, Phys. Rev. Lett. 27, 482 (1971).

    Article  ADS  Google Scholar 

  39. R.J. Donnelly, to be published.

    Google Scholar 

  40. J.P. McTague, P.A. Fleury, and D.B. DuPre, Phys. Rev. 188, 303 (1969).

    Article  ADS  Google Scholar 

  41. E.R. Pike and J.M. Vaughan, J. Phys. C 4, L362 (1971).

    Article  ADS  Google Scholar 

  42. R.E. Slusher and C.M. Surko, Phys. Rev. Lett. 27, 1699 (1971).

    Article  ADS  Google Scholar 

  43. N.R. Werthamer, Phys. Rev. 185, 348 (1969); N.R. Werthamer, R.L. Gray, and T.R. Koehler, Phys. Rev. B 4, 1324 (1971).

    Article  ADS  Google Scholar 

  44. N.R. Werthamer, R.L. Gray, and T.R. Koehler, Phys. Rev. B 4, 1324 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer Science+Business Media New York

About this chapter

Cite this chapter

Greytak, T.J. (1974). Light Scattering As a Probe of Liquid Helium. In: Timmerhaus, K.D., O’Sullivan, W.J., Hammel, E.F. (eds) Low Temperature Physics-LT 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7864-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7864-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7866-2

  • Online ISBN: 978-1-4684-7864-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics