Light Scattering As a Probe of Liquid Helium

  • T. J. Greytak


Laser light sources and advances in optical spectrometers have made possible the use of inelastic light scattering as a probe of liquid helium. Pure 4He, pure 3He, and isotopic mixtures have been studied in several laboratories. The experiments fall into two categories: Brillouin and Raman scattering. Brillouin scattering measures the spectrum of the equilibrium density fluctuations which contains contributions from all the hydrodynamic modes of the liquid. The velocity and attenuation of high-frequency first and second sound have been obtained by this technique, and it is currently being used to study the dynamics of the critical regions associated with the lambda transition and with the tricritical point. Raman scattering gives information about the elementary excitations in the medium. These experiments have been used to measure roton linewidths, to demonstrate the existence of a bound state of two rotons, and to study optical phonons in solid helium.


Dispersion Curve Raman Scattering Liquid Helium Helium Atom Elementary Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I.A. Jakovlev, J. Phys. USSR 7, 307 (1943).Google Scholar
  2. 2.
    J.C. McLennan, H.D. Smith, and J.O. Wilhelm, Phil. Mag. 14, 161 (1932).Google Scholar
  3. 3.
    V.L. Ginsburg, J. Physics (Moscow) 7, 305 (1943).Google Scholar
  4. 4.
    A.W. Lawson and Lothar Meyer, Phys. Rev. 93, 259 (1954).ADSCrossRefGoogle Scholar
  5. 5.
    H.Grimm and K. Dransfeld, Z. Naturforsch. 22A, 1629 (1967).ADSGoogle Scholar
  6. 7.
    L.P. Gorkov and L.P. Pitaevskii, Soviet Phys.—JETP 33, 486 (1958).ADSGoogle Scholar
  7. 8.
    A.A. Abrikosov and I.M. Khalatnikov, Soviet Phys.—JETP 34, 135 (1958).MathSciNetGoogle Scholar
  8. 9.
    B.N. Ganguly and A. Griffin, Can. J. Phys. 46, 1895 (1968).ADSCrossRefGoogle Scholar
  9. 10.
    A. Griffin, Can. J. Phys. 47, 429 (1969).ADSCrossRefGoogle Scholar
  10. 11.
    B.N. Ganguly, Phys. Lett. 29A, 234 (1969).CrossRefGoogle Scholar
  11. 12.
    W.F. Vinen, in Physics of Quantum Fluids (Tokyo Summer Lectures in Theoretical and Experimental Physics, 1970, R. Kubo and F. Tanako, eds.), Syokabo, Tokyo, Japan.Google Scholar
  12. 13.
    B.N. Ganguly, Phys. Rev. Lett. 26, 1623 (1971);ADSCrossRefGoogle Scholar
  13. Phys. Lett. 39A, 11 (1972); W.F. Vinen, J. Phys. C 4, L287 (1971).Google Scholar
  14. W.F. Vinen, J. Phys. C 4, L287 (1971).Google Scholar
  15. 14.
    R.L. St. Peters, T.J. Greytak, and G.B. Benedek, Bull. Am. Phys. Soc. 13, 183 (1968); Opt. Comm. 1, 412 (1970).ADSCrossRefGoogle Scholar
  16. 15.
    E.R. Pike, J.M. Vaughan, and W.F. Vinen, J. Phys. C3, L40 (1970).Google Scholar
  17. 16.
    E.R. Pike, J. Physique 33, C1–25 (1972).CrossRefGoogle Scholar
  18. 17.
    R.A. Ferrell, N. Menyhàrd, H. Schmidt, F. Schwabl, and P. Szépfalusy, Ann. Phys. (N.Y.) 47, 565 (1968).ADSCrossRefGoogle Scholar
  19. 18.
    G. Winterling, F. Holmes, and T. Greytak, this volume.Google Scholar
  20. 19.
    E.R. Pike, J.M. Vaughan, and W.F. Vinen, Phys. Lett. 30A, 373 (1969).CrossRefGoogle Scholar
  21. 20.
    C.J. Palin, W.F. Vinen, E.R. Pike, and J.M. Vaughan, J. Phys. C 4, L225 (1971).ADSCrossRefGoogle Scholar
  22. 21.
    R.F. Benjamin, D.A. Rockwell, and T.J. Greytak, this volume.Google Scholar
  23. 22.
    T.J. Greytak and G.B. Benedek, Phys. Rev. Lett. 17, 179 (1966).ADSCrossRefGoogle Scholar
  24. 23.
    D.R. Watts, W.I. Goldburg, L.D. Jackel, and W.W. Webb, J. Physique 33, C1–155 (1972); D.R. Watts and W.W. Webb, this volume.Google Scholar
  25. 24.
    M.A. Woolf, P.M. Platzman, and M.G. Cohen, Phys. Rev. Lett. 17, 294 (1966).ADSCrossRefGoogle Scholar
  26. 25.
    W. Heinicke, G. Winterling, and K. Dransfeld, Phys. Rev. Lett. 22, 170 (1969).ADSCrossRefGoogle Scholar
  27. 26.
    G. Jacucci and G. Signorelli, Phys. Lett. 26A, 5 (1967).CrossRefGoogle Scholar
  28. 27.
    S. Cunsolo, G. Grillo, and G. Jacucci, in Proc. 12th Intern. Conf. Low Temp. Phys., Kyoto, 1970, Academic Press of Japan, Tokyo, (1971).Google Scholar
  29. 28.
    D. Petrac and M.A. Woolf, Phys. Rev. Lett. 28, 283 (1972).ADSCrossRefGoogle Scholar
  30. 29.
    J.W. Halley, Bull. Am. Phys. Soy. 13, 398 (1968); Phys. Rev. 181, 338 (1969).ADSCrossRefGoogle Scholar
  31. 30.
    M.J. Stephen, Phys. Rev 187, 279 (1969).ADSCrossRefGoogle Scholar
  32. 31.
    T.J. Greytak and J. Yan, Phys. Rev. Leu. 22, 987 (1969); in Proc. 12th Intern. Conf. Low Temp. Phys. Kyoto, 1970, ( Academic Press of Japan, Tokyo, 1971 ).Google Scholar
  33. 32.
    J. Ruvalds and A. Zawadowski, Phys. Rev. Lett. 25, 333 (1970).ADSCrossRefGoogle Scholar
  34. 33.
    F. Iwamoto, Prog. Theor. Phys. (Japan) 44, 1135 (1970).ADSCrossRefGoogle Scholar
  35. 34.
    T.J. Greytak, R. Woerner, J. Yan, and R. Benjamin, Phys. Rev. Lett. 25, 1547 (1970).ADSCrossRefGoogle Scholar
  36. 35.
    A. Zawadowski, J. Ruvalds, and J. Solana, Phys. Rev. A 5, 399 (1972).ADSCrossRefGoogle Scholar
  37. 36.
    J. Solana, V Celli, J. Ruvalds, I. Tüttö, and A. Zawadowski, to be published.Google Scholar
  38. 37.
    J. Yan and M.J. Stephen, Phys. Rev. Lett. 27, 482 (1971).ADSCrossRefGoogle Scholar
  39. 38.
    R.J. Donnelly, to be published.Google Scholar
  40. 39.
    J.P. McTague, P.A. Fleury, and D.B. DuPre, Phys. Rev. 188, 303 (1969).ADSCrossRefGoogle Scholar
  41. 40.
    E.R. Pike and J.M. Vaughan, J. Phys. C 4, L362 (1971).ADSCrossRefGoogle Scholar
  42. 41.
    R.E. Slusher and C.M. Surko, Phys. Rev. Lett. 27, 1699 (1971).ADSCrossRefGoogle Scholar
  43. 42.
    N.R. Werthamer, Phys. Rev. 185, 348 (1969); N.R. Werthamer, R.L. Gray, and T.R. Koehler, Phys. Rev. B 4, 1324 (1971).ADSCrossRefGoogle Scholar
  44. N.R. Werthamer, R.L. Gray, and T.R. Koehler, Phys. Rev. B 4, 1324 (1971).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • T. J. Greytak
    • 1
  1. 1.Department of Physics and Center for Materials and Engineering ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations