Thermal Excitation of Fourth Sound in Liquid Helium II

  • H. Wiechert
  • R. Schmidt


In narrow channels filled with helium II two wave modes propagate, fourth sound1–3 and the fifth wave mode.4–6 According to new results of theoretical studies,7–8 it has been predicted that it should be possible to excite both wave modes mechanically by vibrating the diaphragm of a condenser microphone as well as thermally by periodically heating the surface of a solid body (e.g., a resistance layer). Shapiro and Rudnick3 have produced and detected fourth-sound signals mechanically. In the present contribution it will be experimentally verified that it is also possible to excite fourth sound thermally. Since the theory7,8 gives the result that fourth sound can be generated thermally only if the fifth-wave mode is taken into account, the detection of a thermally excited fourth-sound signal is also a first, indirect proof for the existence of the fifth-wave mode.


Wave Mode Liquid Helium Narrow Channel Pressure Amplitude Thermal Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.R. Pellam, Phys. Rev. 73, 608 (1948).ADSMATHCrossRefGoogle Scholar
  2. 2.
    K.R. Atkins, Phys. Rev. 113, 962 (1959).ADSCrossRefGoogle Scholar
  3. 3.
    K.A. Shapiro and I. Rudnick, Phys. Rev. 137, A1383 (1965).ADSCrossRefGoogle Scholar
  4. 4.
    L. Meinhold-Heerlein, Phys. Lea. 26A, 495 (1968); Z. Physik 213, 152 (1968).CrossRefGoogle Scholar
  5. 5.
    I.N. Adamenko and M.I. Kaganov, Soviet Phys.JETP 26, 394 (1968).ADSGoogle Scholar
  6. 6.
    H. Wiechert and L. Meinhold-Heerlein, Phys. Leu. 29A, 41 (1969); J. Low Temp. Phys. 4, 273 (1971).ADSCrossRefGoogle Scholar
  7. 7.
    H. Wiechert, Thesis, Mainz, 1969 (to be published).Google Scholar
  8. 8.
    H. Wiechert and G.U. Schubert, this volume.Google Scholar
  9. 9.
    G. Frommann and K. Keck, Z. angew. Phys. 31, 258 (1971).Google Scholar
  10. 10.
    A. Hofmann, K. Keck, and G.U. Schubert, Z. Phys. 231, 177 (1970).ADSCrossRefGoogle Scholar
  11. 11.
    R.F. Harris-Lowe and K.A. Smee, Phys. Rev. A2, 158 (1970).ADSCrossRefGoogle Scholar
  12. 12.
    H.C. Kramers, J.D. Wasscher, and C.J. Gorter, Physica 18, 329 (1952).ADSCrossRefGoogle Scholar
  13. 13.
    E.C. Kerr and R.D. Taylor, Ann. Phys. 26, 292 (1964).ADSCrossRefGoogle Scholar
  14. 14.
    M. Kriss and I. Rudnick, J. Low Temp. Phys. 3, 339 (1970).ADSCrossRefGoogle Scholar
  15. 15.
    G. Kuper, Physica 24, 1009 (1956).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • H. Wiechert
    • 1
  • R. Schmidt
    • 1
  1. 1.Institut für PhysikJohannes Gutenberg UniversitätMainzGermany

Personalised recommendations