Advertisement

Stress-Strain Characteristics of Vascular Prostheses: Is There a Relationship to Healing and Graft Patency?

  • Axel D. Haubold
  • Harvey S. Borovetz
Part of the NATO ASI Series book series (volume 166)

Abstract

Considerable interest has been generated by the so-called compliance hypothesis. This hypothesis was formally introduced by Abbott et al.(1987) and by Clark et al.(1976) based on the observation that the patency of a series of vascular grafts correlated with the elasticity of these grafts. The hypothesis states that patency of a vascular prosthesis will be optimal if its mechanical properties match those of the anastomosed natural vessel. Intuitively, this premise appears obvious and seems to be supported by their data and that of others (Christenson et al.,1987; Kinley and Marble, 1980; Edwards and Mulherin, 1980; Walden et al.,1980; Seifert et al.,1979; White et al.,1987). Seifert et al.(1979), for example, indicated that the patency of polyurethane prostheses, whose elasticity closely approximated that of the native artery, was superior to prosthesis which were either more or less elastic than the native vessel. Consequently, prostheses have been developed to “match” and maintain the compliance of the native vessels (White et al.,1982; Hess et al.,1984; van der Lei et al.,1986; Taylor, 1982; Annis et al., 1978; Fisher et al.,1984; Gogolewski and Galleti,1984). Herein lies the dilemma for the developer of a small diameter prosthesis — “what is meant by the term vessel wall compliance of an artery”.

Keywords

Intimal Hyperplasia Vascular Graft Smooth Muscle Cell Proliferation Graft Patency Vascular Prosthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, W.M., Megerman, J., Hasson, J.E., L’Italien, G. and Warnock D.F., 1987, Effect of compliance mismatch on vascular graft patency, J. Vasc. Surg., 5: 376.PubMedGoogle Scholar
  2. Allen, B.T., Mathias, C.J., Sicard, G.A., Welch, M.J. and Clark R.E., Platelet deposition on vascular grafts, Ann.Surg .,203(3):318.Google Scholar
  3. Anderson, J., 1988, Personal communication and presented at discussion. 34th Annual Meeting, ASAIO, Reno, Nevada, May 3–6.Google Scholar
  4. Annis, D., Bornat, A., Edwards, R.O., Higham, A., Loveday, B. and Wilson, J., 1978, A_ n elastomeric vascular prosthesis, Trans. Am. Arti!. Intern. Organs.,24:209.Google Scholar
  5. Ascer, E., Veith, F.J. and Flores, S.A.W., 1986, Infrapopliteal bypasses to heavily calcified rock-like arteries: management and results. Am. J. Surgery, 152: 220.CrossRefGoogle Scholar
  6. Baird, R.N., Kidson, I.G., L’Italien, G.J. et al., 1977, Dynamic compliance of arterial grafts, Am. J. Physiol., 233: H568.PubMedGoogle Scholar
  7. Bergel, D.H., 1961, The dynamic elastic properties of the arterial wall, J. Physiol., 156: 458.PubMedGoogle Scholar
  8. Bouchier-Hayes, D., 1980, Experimental studies in vascular grafting, J. Irish Phys. Surg., 9: 149.Google Scholar
  9. Brant, A.M., Shah, S.S., Rodgers, V.G.J., Hoffmeister, J., Herman, I M., Kormos, R.L. and Borovetz, H.S., 1988, Biomechanics of the arterial wall under simulated flow conditions, J. Biomechanics, 21 (2): 107.CrossRefGoogle Scholar
  10. Caro, C.G., Pedley, T.J., Schroter, R.C. and Seed, W.A., 1978, Solid mechanics and the properties of blood vessel walls, in: Mechanics of the Circulation, C.G. Caro ed., Oxford, University Press, pp 86–105.Google Scholar
  11. Christenson, J.T., Eklof, B., Al-Huneidi, W. and Owunwanne, A., 1987, Elastic and thrombogenic properties for different vascular grafts and its influence on graft patency, Inter. Angio., 6: 81.Google Scholar
  12. Clark, R.E., Apostolou, S. and Kardos, J.L., 1976, Mismatch of mechanical properties as a cause of arterial prostheses thrombosis, Surgical Forum, 27: 208.PubMedGoogle Scholar
  13. Clowes, A.W., Kirkman, T.R. and Clowes, M.M., 1986, Mechanisms of arterial graft failure. II. Chronic endothelial and smooth muscle cell proliferation in healing polytetrafluoroethylene prostheses, J. Vasc. Surg., 3: 877.PubMedGoogle Scholar
  14. Clowes, A.W. and Reidy, M.A., 1987, Mechanisms of arterial graft failure: the role of cellular proliferation, in: Blood in Contact with Natural and Artificial Surfaces, E.F. Leonard, V.T. Turitto and Vroman, L., eds., Annals of the New York Academy of Sciences, vol 516, pp 673.Google Scholar
  15. Debski, R., Borovetz, H., Haubold, A. and Hardesty, R., 1982, Polytetrafluoroethylene grafts coated with ULTI carbon, Trans. Am. Soc. Artif. Intern.Organs., 28: 456.PubMedGoogle Scholar
  16. Edwards, W.H. and Muiherin, J.L., 1980, The role of graft material in femorotibial bypass grafts, Ann. Surg., 191: 721.PubMedCrossRefGoogle Scholar
  17. Eggleton, S.P.H., Palmer, J., Stamp, G., Bain, J.R., Settlage, R.A. and Newcombe, J.F.,1986, Heterotopic ossification of an expanded polytetrafluoroethylene vascular graft, Br. J. Surg., 73: 159.Google Scholar
  18. Fisher, A.C., DeCossart, L., How, T.W. and Annis, D., 1984, A small bore Biomer arterial prosthesis: In vivo performance, Life Support Syst, 2 (Suppl 1): 340.Google Scholar
  19. Fisher, A.C., How, T.V., Cossart, L. and Annis, D., 1985, The longer term patency of a compliant small diameter arterial prosthesis: the effect of the withdrawing of aspirin and dipyridamole therapy: the effect of reduced compliance, Trans. Am. Soc. Artif. Intern. Organs, 31: 324.PubMedGoogle Scholar
  20. Fischer, G.M., Swain, M.L. and Cherian, K., 1980, Pulsatile distention and vascular collagen synthesis in the rabbit, Blood Vessels, 17: 216.PubMedGoogle Scholar
  21. Friedman, M.H., Hutchins, G.M., Bargeron, B., Deters, O.J. and Mark, F.F., 1981, Correlation between intimal thickness and fluid shear in human arteries, Atherosclerosis, 39: 425.PubMedCrossRefGoogle Scholar
  22. Gagnon, Y., Guidoin, R., Downs, A.R., Martz, H., DeEstable-Puig, R.F., Beaudoin, G., Marois, D., Laroche, G., Roy, P. and Gosselin, C., 1986, The virgin, modified, human, umbilical vein graft: morphologic characteristics and mechanical properties, The Canadian Journal of Surgery, 29 (6): 411.Google Scholar
  23. Gogolewski, S. and Galleti, G., 1984, Microporous compliant vascular prosthesis of adjustable rate of degradation, Life Support Syst, 2 (Suppl 1): 324.Google Scholar
  24. Gow, B.S., 1970, Viscoelastic properties of conduit arteries, Circ. Res., 26 & 27, Suppl 2: 113.Google Scholar
  25. Gow, B.S., Schonfeld, D. and Patel, D.J., 1974, The dynamic elastic properties of the canine left circumflex coronary artery, J. Biomechanics, 7: 389.CrossRefGoogle Scholar
  26. Greisler, H.P., Kim, D.U., Dennis, J.W., Klosak, J.J., Widerborg, K.A., Endean, E.D., Raymond, R.M. and Ellinger, J., 1987, Compound polyglactin 910/polypropylene small vessel prostheses, J. Vasc. Surg., 5: 572.PubMedGoogle Scholar
  27. Greisler, H.P., Kim, D.U., Price, J.B. and Voorhees, A.B., 1985, Arterial regenerative activity after prosthetic implantation, Arch. Surg., 120: 315.PubMedCrossRefGoogle Scholar
  28. Guidoin, R., Marceau, D., Rao, T.J., King, M., Merhi, Y., Roy, P.E., Martin, L. and Duval, M., 1987, In vitro and in vivo characterization of an impervious polyester arterial prosthesis: the Gelseal TriaxialR graft, Biomaterials, 8: 433.PubMedCrossRefGoogle Scholar
  29. Hagen, P.O., Wang, Z.G., Mikat, E.M. and Hackel, D.B., 1982, Antiplatelet therapy reduces aortic intimal hyperplasia distal to small diameter vascular prosthesis (PTFE) in non-human primates, Ann. Surg., 195 (3): 328.PubMedCrossRefGoogle Scholar
  30. Hardung, V., 1953, Vergleichende Messungen der dynamischen Elastizitat and Viskositat von Blutgefassen Kautschuk and synthetischen Elastomeren, Heiv. Physiol. Pharmacol. Acta, 11: 194.Google Scholar
  31. Hasson, J.E., Megerman, J. and Abbott, W.M., 1985, Increased compliance near vascular anastomoses, J. Vasc. Surg., 2: 419.PubMedGoogle Scholar
  32. Hess, F., Jerusalem, C,. Braun, B. and Grande, P., 1984, Patency and neo-intima development in 10 cm-long microvascular polyurethane prostheses implanted into the rat aorta, Thorac. Cardiovasc. Surgeon, 32: 283.CrossRefGoogle Scholar
  33. Kinley, C.E. and Marble, A.E., 1980, Compliance: a continuing problem with vascular grafts, J. Cardiovas. Surg., 21: 163.Google Scholar
  34. Lannerstad, O., Bergqvist, D., Dougan, P., Ericsson, B.F. and Nilsson, B., 1987Google Scholar
  35. Acute thrombogenicity of a compliant polyurethane urea graft compared with polytetrafluoroethylene: an experimental study in sheep, Eur. Surg. Res.,19:6.Google Scholar
  36. Learoyd, B.M. and Taylor, M.G., 1966, Alterations with age in the viscoelastic properties of human arterial wall, Circ. Res., 18: 287.CrossRefGoogle Scholar
  37. Lye, C.R., Sumner, D.S., Hokanson, D.E. and Strandness, D.E., 1975, The transcutaneous measurement of the elastic properties of the human saphenous vein femoropopliteal bypass graft, Surg. Gynecol. Obstet., 141: 891.PubMedGoogle Scholar
  38. Naumann, A. and Schmid-Schonbein, H., 1983, A fluid-dynamicist’s and a physiologist’s look at arterial flow and arteriosclerosis, in: G. Schettler, R.M. Nerem, H. Schmid-Schonbein and H.M.C. Diehm, eds., Fluid Dynamics as a Localizing Factor for Atherosclerosis, Berlin, Springer-Verlag, pp 9.CrossRefGoogle Scholar
  39. Nicolaides, A.N., 1987, Haemodynamic and rheological aspects of vascular grafts, Acta Chir. Scand., 538: 12.Google Scholar
  40. Oblath, R.W., Buckley, R.O., Green, R.M., Schwartz, S.I. and DeWeese, J.A., 1978, Prevention of platelet aggregation and adherence to prosthetic vascular grafts by aspirin and dipyridamole, Surgery, 84 (1): 37.PubMedGoogle Scholar
  41. Paasche, P.E., Kinley, C.E., Dolan, F.G., Gozna, E.R. and Marble, A.E., 1973, Consideration of suture line stresses in the selection of synthetic grafts for implantation, J. Biomechanics, 6: 253.CrossRefGoogle Scholar
  42. Pae, W.E.,Jr., Waldhausen, J.A., Prophet, G.A. and Pierce, W.S., 1981, Primary vascular anastomosis in growing pigs: comparison of polypropylene and polyglycolic acid sutures, J. Thorac. Cardiovasc. Surg., 81: 921.PubMedGoogle Scholar
  43. Patel, D.J. and Fry, D.L., 1969, The elastic symmetry of arterial segments in dogs, Circ. Res., 24: 1.PubMedCrossRefGoogle Scholar
  44. Patel, D.J. and Janicki, J.S., 1970, Static elastic properties of the left coronary circumflexGoogle Scholar
  45. artery and the common carotid artery in dogs, Circ. Res.,27 (2):149.Google Scholar
  46. Peterson, L.H., Jensen, R.E. and Parnell, J., 1960, Mechanical properties of arteries in vivo, Circ. Res., 8: 622.CrossRefGoogle Scholar
  47. Schultz, R.D., Hokanson, D.E. and Strandness, D.E., Jr., 1967, Pressure-flow and stress-strain measurements of normal and diseased aortoiliac segments, Surg. Gynecol. Obstet., 124: 1267.PubMedGoogle Scholar
  48. Seifert, K.B., Albo, D. Jr., Knowlton, H. and Lyman, D.J., 1979, Effect of elasticity of prosthetic wall on patency of small-diameter arterial prostheses, Surg. Forum, 30: 206.PubMedGoogle Scholar
  49. Serruys, P.W., Juilliere, Y., Bertrand, M.E., Peul, J., Rickards, A.F. and Sigwart, U., 1988, Additional improvement of stenosis geometry in human coronary arteries by stenting after balloon dilation, Am. J. Cardiol., 61: 71G.Google Scholar
  50. Shimazu, T., Hori, M., Mishima, M., Kitabatake, A., Kodama, K., Nanto, S. and Inoue, M., Clinical assessment of elastic properties of large coronary arteries: pressure-diameter relationship and dynamic incremental elastic modulus, Int. J. Cardiol., 13: 27.Google Scholar
  51. Szilagyi, D.E., Whitcomb, J.G., Schenber, W. and Waibel, P., 1960, The laws of fluid flow and arterial grafting, Surgery, 47: 55.Google Scholar
  52. Taylor, D.E.M., 1982, Biomaterials in reconstructive surgery, in:, Reconstructive Procedures On Surgery, P.G. Began, ed., Oxford, Blackwell pp. 1.Google Scholar
  53. van der Lei, B., Wildevuur, C.R.H. and Nieuwenhuis, P., 1986, Compliance and biodegradation of vascular grafts stimulate the regeneration of elastic laminae in neoarterial tissue: An experimental study in rats, Surgery, 99 (1): 45.PubMedGoogle Scholar
  54. Walden, R., L’Italien, G.J., Megerman, J. and Abbott, W.M., 1980, Matched elastic properties and successful arterial grafting, Archs. Surg., 115: 1166.CrossRefGoogle Scholar
  55. Wesolow, A., 1982, The healing of arterial prostheses - the state of the art, Thorac. Cardiovasc. Surgeon, 30: 196.CrossRefGoogle Scholar
  56. White, R.A., Klein, S.R. and Shors, E.C., 1987, Preservation of compliance in a small diameter microporous, silicone rubber vascular prosthesis, J. Cardiovasc. Surg., 28: 485.Google Scholar
  57. White, R.A., Shors, E., Miranda, R.M., Klein, S.R., Goldberg, L., Bosco, P. and Nelson, R.J., 1982, Microporous flow surface variation and short term thrombogenicity in dogs, Biomaterials, 3: 145.PubMedCrossRefGoogle Scholar
  58. White, R., Goldberg, L., Hirose, F., Klein, S., Bosco, P., Miranda, R., Long, J., Nelson, R. and Shors, E., 1983, Effect of healing on small internal diameter arterial graft compliance, Biomat. Med. Dew. Art. Org., 11 (1): 21.Google Scholar
  59. Wright, K.C., Wallace, S., Charnsangovej, C., Carrasco, C.H. and Gianturco, C., 1985, Percutaneous endovascular stents: An experimental evaluation, Radiology, 156: 69.PubMedGoogle Scholar
  60. Zacharias, R.K., Kirkman, T.R. and Clowes, A.W., 1987, Mechanisms of healing in synthetic grafts, J. Vasc. Surg., 6: 429.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Axel D. Haubold
    • 1
  • Harvey S. Borovetz
    • 2
  1. 1.CarboMedics, Inc.AustinUSA
  2. 2.University of PittsburghPittsburghUSA

Personalised recommendations