Advertisement

Clinical Importance of the Compliant Conduit

  • Joseph Megerman
  • William M. Abbott
Part of the NATO ASI Series book series (volume 166)

Abstract

A primary physiological function of the aorta and its major branches is to convert the highly pulsatile output of the left ventricle to a more nearly uniform and steady flow in the arterioles and capillaries, with a minimum loss of energy (McDonald, 1974). This requires that peripheral vascular input impedance (which is a complex function of arterial resistance, fluid inertance, and arterial compliance [capacitance, distensibility]) be matched to the output impedance of the heart. Thus, a complete mechanical description of the heart and its prospective replacements, or fluid mechanical description of blood flow in the major arteries must take into account arterial compliance. Compliance is defined in this chapter as the fractional change in volume per unit change in pressure: C=(ΔV/V)/ΔP. For cylinders of fixed length, a good approximation to the major blood vessels, this simplifies to twice the fractional change in diameter per unit change in pressure: C=2(ΔD/ΔP)/D. However, it has become commonplace with many authors (Baird, 1977; Megerman and Abbott, 1983; Klein et al.,1982) to omit the constant multiplier, “2”, and this practice will be followed here as well [i.e. C=(ΔD/D)/ΔP; units: % change in diameter/100 mmHg].

Keywords

Pulse Wave Velocity Graft Failure Intimal Hyperplasia Vascular Graft Arterial Compliance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, W.M. and Boucher-Hayes, D.J., 1978, The role of mechanical properties in graft design. in: “Graft Materials in Vascular Surgery”, H. Dardik, ed., Symposia Specialist, Medical Books, Miami.Google Scholar
  2. Abbott, W.M., Megerman, J., Hasson, J.E., L’Italien, G.J. and Warnock, D., 1987, Effect of compliance mismatch upon vascular graft patency. J. Vasc. Surg., 5: 376.PubMedGoogle Scholar
  3. Abbott, W.M. and Walden, R., 1981, The current status of blood vessel grafts and indications for use. in: “Integrated Medicine, Volume 2 of a companion to the Life Sciences”, S.B. Day, ed., Van Nostrand Reinhold, New York.Google Scholar
  4. Ashworth, E.M., Dalsing, M.C., Olson, J.F., Hoagland, W.P., Baughman, S. and Glover, J.L., 1987, Large-artery welding with a miliwatt carbon dioxide laser, Arch. Surg., 122: 673.PubMedCrossRefGoogle Scholar
  5. Baird, R.N. and Abbott, W.M., 1976, Pulsatile blood flow in arterial grafts. Lancet, II: 948.CrossRefGoogle Scholar
  6. Callow, A.D., 1982, Historical overview of experimental and clinical development of vascular grafts. in: “Biologic and Synthetic Vascular Protheses”, J.C. Stanley, ed., Grune and Stratton, New York.Google Scholar
  7. Cambria, R.P., Megerman, J., Brewster, D.C., Warnock, D.F., Hasson, J.E. and Abbott, W.M., 1987, The evolution of morphologic and biomechanical changes in reversed and in situ vein grafts, Ann. Surg., 205: 167.PubMedCrossRefGoogle Scholar
  8. Cambria, R.P., Walden, R., Megerman, J., L’Italien, G.J. and Abbott, W.M., 1983, Non-invasive intraoperative assessment of arterial reconstruction: Experimental validation of the role of central and regional hemodynamics. Arch. Surg., 118: 1152.PubMedCrossRefGoogle Scholar
  9. Christensen, J.T., Megerman, J., Hanel, K.C.,:L’Italien, G.J., Strauss, H.W. and Abbott, W.M., 1981, the effect of blood flow rates on platelet deposition in PTFE arterial bypass grafts. Trans. ASAJO 27: 188.Google Scholar
  10. Clark, R.E., Apostolou, S. and Kardos, J.L., 1976, Mismatch of mechanical properties as a cause of arterial prosthesis thrombosis. Surg. Forum, 27: 208.PubMedGoogle Scholar
  11. Clifford, P.C., Skidmore, R., Bird, B., Woodcock, J.P., Lusby, R.J. and Baird, R.N., 1982, Femoral artery doppler signal analysis in lower limb ischemia. J. Cardiovasc. Surg., 23: 69.Google Scholar
  12. Clowes, A.W., Kirkman, T.R. and Clowes, M.M., 1986, Mechanisms of arterial graft failure. I: chronic endothelial and smooth muscle cell proliferation in healing PTFE protheses. J. Vasc. Surg., 3: 877.PubMedGoogle Scholar
  13. Galletti, P.M., Aebischer, P., Sasken, H.F., Goddard, M.B. and Chiu, T., 1988, Experience with fully bioresorbable aortic grafts in dogs. Surg, 103: 231.Google Scholar
  14. Hamilton, G., Megerman, J., L’Italien, G.J., Warnock, D.F., Schmitz-Rixen, T., Brewster, D.C. and Abbott, W.M., 1988, Prediction of aneurysm formation in vascular grafts of biological origin. J. Vasc. Surg., 7: 400.PubMedGoogle Scholar
  15. Hasson, J.E., Megerman, J. and Abbott, W.M., 1985, Increased compliance near vascular anastomoses. J. Vasc. Surg., 2: 419.PubMedGoogle Scholar
  16. Hasson, J.E., Megerman, J. and Abbott, W.M., 1984, Postsurgical changes in arterial compliance. Arch. Surg., 119: 188.CrossRefGoogle Scholar
  17. Hasson, J.E., Megerman, J. and Abbott, W.M., 1986, Suture technique and paraanastomotic compliance. J. Vasc. Surg., 3: 196.Google Scholar
  18. Herring, M. and Glover, J.L., 1987, “Endothelial Seeding in Vascular Surgery”, Ed., Grune and Stratton, Orlando.Google Scholar
  19. Herring, M.B., Dilley, R., Peterson, G., Wiggans, J., Gardner, A. and Glover, J., 1982, Graft material, length and diameter determine the patency of small arterial prostheses in dogs. J. Surg. Res., 32: 138.PubMedCrossRefGoogle Scholar
  20. Ives, C.L., Eskin, S.G., McIntire, L.V. and DeBakey, M.E., 1983, The importance of cell origin and substrate in the kinetics of endothelial cell alignment in response to steady flow. Trans. ASAJO, 29: 269.Google Scholar
  21. Kidson, I.G. and Abbott, W.M., 1978, Low compliance and arterial graft occlusion. Circ., 58: Supp1I:1.Google Scholar
  22. King, D., Coghlan, B., Gosling, R., Pickup, A., Newman, D. and Woodcock, J., 1972, Transcutaneous measurement of pulse wave velocity and mean blood pressure in man, in: “Blood Flow Measurement”, V.C. Roberts, ed., Pitman Medical, Turnbridge Wells.Google Scholar
  23. Kinley, C.E. and Marble, A.E., 1980, Compliance: a continuing problem with vascular grafts. J. Cardiovasc. Surg., 21: 163.Google Scholar
  24. Klein, S.R., Goldberg, L., Miranda, R.M., Bosco, P., Nelson, R.J. and White R.A., 1982, Effect of suture technique on arterial anastomotic compliance. Arch. Srug., 117: 45.CrossRefGoogle Scholar
  25. Leung, O.Y., Glagov, S.G. and Mathews, M.B., 1975, Cyclic stretching stimulates synthesis of components by arterial smooth muscle cells in vitro. Science, 191: 475.CrossRefGoogle Scholar
  26. L’Italien, G.J., Megerman, J., Hasson, J.E., Meyer, A.E., Baier, R.E. and Abbott, W.M. 1986, Compliance changes in glutaraldehyde treated arteries. J. Surg. Res. 41: 182.PubMedCrossRefGoogle Scholar
  27. LoGerfo, F.W., Quist, W.C., Nowak, M.d., Crawshaw, H.M. and Haudenschild, C.C., 1983, Downstream anastomotic hyperplasia: a mechanism of failure in Dacron arterial grafts. Ann. Surg. 197: 479.PubMedCrossRefGoogle Scholar
  28. Lye, C.R., Summer, D.S. and Strandness, D.E., 1975, The transcutaneous measurements of the elastic properties of the human saphenous vein femoro-popliteal bypass graft. Surg. Gynecol. Obstet., 141: 891.PubMedGoogle Scholar
  29. Madras, P., Ward, C., et al., 1981, Anastomotic hyperplasia. Surg, 80:922. Megerman, J., 1988, Unpublished results.Google Scholar
  30. Megerman, J. and Abbott, W.M., 1983, Compliance in vascular grafts, in: “Vascular Grafting”, C.b. Wright, R.W. Hobson, L.E., Hiratzka, and T.G. Lynch, eds., John Wright-PSG, Boston.Google Scholar
  31. Megerman, J., Christensen, J.T., Hanel, K.C., Strauss, H.W. and Abbott, W.M., 1983, Imaging vascular grafts in vivo with Indium-111-labeled platelets: Influence of timing on image interpretation. Ann. Surg., 198: 178.PubMedCrossRefGoogle Scholar
  32. Megerman, J., Hanel, K.C. and Abbott, W.M., 1988, unpublished results.Google Scholar
  33. Megerman, J., Hasson, J.E., Warnock, D.F., L’Italien, G.J. and Abbott, W.M., 1986,Noninvasive measurements of nonlinear arterial elasticity. Am. J. Physiol.250:H181.Google Scholar
  34. Paasche, P.E., Kinley, C.E., Dolan, F.G., et al., 1973, Consideration of suture line stresses in the selection of synthetic grafts for implantation. J. Biomech., 6: 253.PubMedCrossRefGoogle Scholar
  35. Seifert, K.b., Albo, D., Knoulton, H. and Lyman, D.J., 1979, Effect of elasticity of prosthetic wall on patency of small-diameter arterial prostheses. Surg. Forum, 30: 206.PubMedGoogle Scholar
  36. Schmitz-Rixen, T., Megerman, J., Abbott, W.M., et al., (in Preparation), Longterm success of a compliant vascular graft of biological origin.Google Scholar
  37. Shoenfeld, N.A., Connoly, R., Ramberg, K., Valeri, C.R., Eldrup-Jorgensen, J. and Callow, A.D., 1988, The systemic activation of platelets by dacron grafts. Surg. Gynecol. Obstet., 166: 454.PubMedGoogle Scholar
  38. Snyder, S.O., Gregory, R.T., Wheeler, J.R. and Gayle, R.G., 1981, Composite grafts utilizing polytetrafluoroethylene-autogenous tissue for lower extremity arterial reconstructions. Surg, 90: 881.Google Scholar
  39. Sottiurai, V.S., Kollros, P., Glagov, S., Zarins, S.K. and Mathews, M.B., 1983, Morphologic alteration of cultured arterial smooth muscle cells by cyclic stretching. J. Surg. Res., 35: 490.PubMedCrossRefGoogle Scholar
  40. Streeter, V.L., 1958, Fluid Mechanics. McGraw-Hill, New York.Google Scholar
  41. Suggs, W.D., Henriques, H.F. and DePalma, R.G., 1988, Vein cuff inter-position prevents juxta-anastomotic neointimal hyperplasia. Ann. Surg., 207: 714.CrossRefGoogle Scholar
  42. Sumpio, B.E., Banes, A.J., Levin, L.G. and Johnson, G., 1987, Mechanical stress stimulates aortic endothelial cells to proliferate. J. Vasc. Surg. 6: 252.PubMedGoogle Scholar
  43. Sumpio, B.E., Banes, A.J., Levin, L.G. and Johnson, G., 1988, Alterations in endothelial cell morphology and cytoskeletal protein synthesis during cyclic tensional deformation. J. Vasc. Surg., 7: 130.PubMedGoogle Scholar
  44. Walden, R., L’Italien, G.J., Megerman, J. and Abbott, W.M., 1980, Matched elastic properties and successful arterial grafting. Arch. Surg., 115: 1166.PubMedCrossRefGoogle Scholar
  45. Walden, R., L’Italien, G.J., Megerman, J., Boucher-Hayes, D., Hanel, K.C., Maloney, R. and Abbott, W.M., 1980, Complementary methods for evaluating carotid artery stenosis: A biophysical basis for ocular pulse wave delays. Surg, 88: 162.Google Scholar
  46. White, R.A., Kopchok, G., Donayre, C., White, G., Lyons, R., Fujitani, R., Klein, S.R. and Uitto, J., 1987, Argon laser-welded arteriovenous anastomoses. J. Vasc. Surg., 6: 447.PubMedGoogle Scholar
  47. Yue, X., van der Lei, B., Schakenraad, J.M., van Oene, G.H., Kuit, J.H., Feijen, J. and Wildevuur, C.R.H., 1988, Smooth muscle cell seeding in biodegradable grafts in rats: A new method to enhance the process of arterial wall regeneration. Surg, 103: 206Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Joseph Megerman
    • 1
  • William M. Abbott
    • 1
  1. 1.Vascular Research Laboratory, Surgical Services Massachusetts General Hospital and Department of SurgeryHarvard Medical SchoolBostonUSA

Personalised recommendations