Arterial Compliance — Physiological Viewpoint

  • Frank C. P. Yin
  • Zhaorong Liu
Part of the NATO ASI Series book series (volume 166)


The aorta and large arteries are generally thought of as conduit vessels whose main function is to provide a path for blood to reach the periphery. However, it has long been recognized that the cardiovascular system functions in more complex fashion than merely as a simple resistance to blood flow. This is evident because the pressure and flow curves are not simple ratios. Thus, any realistic representation of vascular properties must account for the compliance properties of the vasculature (Frank, 1926). One clear manifestation of this compliance is the buffering provided by the large arteries that converts the intermittent flow from the left ventricle to a more continuous peripheral flow. This buffering role is the underpinning of the original and subsequent Windkessel models of the circulation (Beneken, 1972; Burattini et al., 1987; Frank, 1926; Westerhof et al., 1971).


Arterial Compliance Aortic Distensibility Joint Hypermobility Syndrome Aortic Compliance Venous Compliance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avolio, A.P., Chen, S.G., Wang, R.P., Zhang, C.Z., Li, M.F., and O’Rourke, M.F., 1983, Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation, 68: 50.PubMedCrossRefGoogle Scholar
  2. Avolio, A.P., Deng, F.Q., Li W.Q., Luo, Y.F., Huang, Z.D., Xing, L.F., and O’Rourke, M.F., 1985, Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: comparison between urban and rural communities in China. Circulation, 71: 202.PubMedCrossRefGoogle Scholar
  3. Babalis, D., Levy, B.I., Azancott, I., Masquet, C., and Beaufils P., 1984, Ventricular function and arterial compliance in patients with congestive cardiomyopathy. Int. J. Cardiology, 5: 361.CrossRefGoogle Scholar
  4. Beneken J. E. W., 1972, Some computer models in cardiovascular research. in: “Cardiovascular Fluid Dynamics,” D.H. Bergel, ed., Pergamon Press New York, N.Y., 173.Google Scholar
  5. Bourgeois, M.J., Gilbert, B.K., Donald, D.E., and Wood, E.H., 1974, Characteristics of aortic diastolic pressure decay with application to the continuous monitoring of changes in peripheral vascular resistance. Circ Res, 35: 56.PubMedCrossRefGoogle Scholar
  6. Burattini, R., Gnudi G., Westerhof N., and Fioretti S., 1987, Total systemic arterial compliance and aortic characteristic impedance in the dog as a function of pressure: A model based study. Comp. and Biomed. Res., 20: 154.CrossRefGoogle Scholar
  7. Campbell K.B., Ringo, J.A., Klavano, P.A., Robinette, J.D., and Alexander, J.E., 1985, Aortic bulb-aortic orifice hemodynamics in left ventricle-systemic arterial interaction. Am. J. Physiol., 248: H132.PubMedGoogle Scholar
  8. Child, A.H., Dorrance D.E., Jay B., Pope, F.M., Jones, R.B., and Gosling, R.G., 1981, Aortic compliance in connective tissue disorders affecting the eye. Ophthalmol. Pediatric Genet., 1: 59.CrossRefGoogle Scholar
  9. Conroy, M.F., 1969, Estimation of aortic distensibility and instantaneous left ventricular volume in living man. Bull. Math. Biophysics, 31: 93.CrossRefGoogle Scholar
  10. Conroy, M.F., 1971, In-vivo estimations of the nonlinear pressure-volume relationship of the aorta and instantaneous left ventricular volume. Bull. Math. Biophysics., 32: 151.Google Scholar
  11. Cope, F.W., 1961, A method for the computation of aortic distensibility in the living human patient and its use for the determination of the aortic effects of aging, drugs and exercise. Bull. Math. Biophysics, 23: 337.CrossRefGoogle Scholar
  12. Cope, F.W., 1960, An elastic reservoir theory of the human systemic arterial system using current data on aortic elasticity. Bull. Math Biophysics, 22: 19.CrossRefGoogle Scholar
  13. Defares, J.G., and Van Der Waal, H.J., 1969, A method for the determination of systemic arterial compliance in man. Acta. Physiol. Pharmacol. Neth., 15: 329.Google Scholar
  14. Defares, J.G., and Van Der Waal, H.J., 1973, Theory of the measurement of arterial compliance in humans. Bull. Math. Biology, 35: 237.Google Scholar
  15. Deswysen, B., Chalier A.A., and Gevers, M., 1980, Quantitative evaluation of the systemic arterial bed by parameter estimation of a simple model. Med. & Biol. Eng. Comput., 18: 153.CrossRefGoogle Scholar
  16. Dujardin, J.P.L., and Scott, D.L., 1980, The dynamic arterial pressure-flow relationship and total arterial compliance in spontaneously hypertensive and normotensive rats, in: “Cardiovascular System Dynamics,” T. Kenner. R., Busse, and H. Hinghofer-Szalkay. eds., Plenum Press, New York, pp 199.Google Scholar
  17. Frank, O., 1926, Die Theorie der Pulswellen. Zeitschrift fur Biologie, 85: 91.Google Scholar
  18. Goldwyn, R.M., and Watt, T.B., 1967, Arterial pressure pulse contour analysis via a mathematical model for the clinical quantification of human vascular properties. IEEE Trans., BME, 14: 11.CrossRefGoogle Scholar
  19. Guyton, A.C., Venous return. 1963, in: “Handbook of Physiology,” Sec. 2, Vol. 2, V.F. Hamilton and P. Dow, eds., American Physiological Society, Washington D.C., pp. 1099.Google Scholar
  20. Guyton, A.C., Armstrong, G.G., and Chipley, P.L., 1956, Pressure volume curves of arterial and venous systems in live dogs. Am. J. Physiol., 184: 253.PubMedGoogle Scholar
  21. Handler, C.E., Child, A., Light, N.D., and Dorrance, D.E., 1985, Mitral valve prolapse, aortic compliance, and skin collagen in joint hypermobility syndrome. Br. Heart. J., 54: 501.PubMedCrossRefGoogle Scholar
  22. Hardy, H. H., and Collins, R. E., 1982, On the pressure-volume relationship in circulatory elements. Med. & Biol. Eng. Comput., 20: 565.CrossRefGoogle Scholar
  23. Iriuchijima, J., Kumazawa A., and Kawakami, K., 1971, Measurement of aortic compliance in vivo. Jap. Heart. J., 12: 486.PubMedCrossRefGoogle Scholar
  24. Latson, T.W., Huneter, W.C., Katoh, N. and Sagawa, K., 1988, Effect of nitroglycerin on aortic impedance, diameter, and pulse-wave velocity. Circ. Res., 62: 884.PubMedCrossRefGoogle Scholar
  25. Lee, R.W., Lancaster, L.D., Gay, R.G., Paquin,M., and Goldman, S., 1988, Use of acetylcholine to measure total vascular pressure-volume relationship in dogs. Am. J. Physiol., 254: H115.Google Scholar
  26. Levy, B., Birkui, P., and Saumont, E., 1978, Elasticity modulus of the ascending aorta and systemic arterial compliance in dog. INSERM, 78: 141.Google Scholar
  27. Levy, B.I., Benessiano, J., Poitevin, P., Lukin, L., and Safar, M.E., 1985, Systemic arterial compliance in normotensive and hypertensive rats. J. Cardiovasc. Pharmacol.; 7: S28.PubMedCrossRefGoogle Scholar
  28. Liu, Z., Brin, K.P., and Yin, F.C.P., 1986, Estimation of total arterial compliance: an improved method and evaluation of current methods. Am. J. Physiol., 251: H588.PubMedGoogle Scholar
  29. Messerli, F.H., Frohlich, E.D., and Ventura, H.O., 1985, Arterial compliance in essential hypertension. J. Cardiovasc. Pharntacol., 7: S33.CrossRefGoogle Scholar
  30. Neil-Dwyer, G., Child, A.H., Dorrance, D.E., Pope, F.M., and Bartlett, J. 1983, Aortic compliance in patients with ruptured intracranial aneurysms. Lancet, 939.Google Scholar
  31. Randall, O.S., van den Bos., G.C., and Westerhof, N., 1984, Systemic compliance: does it play a role in the genesis of essential hypertension? Cardiovasc. Res., 18: 455.Google Scholar
  32. Remington, J.W., Nobach, C.B., Hamilton, W.F., and Gold, J.J., 1948, Volume elasticity characteristics of the human aorta and the prediction of the stroke volume from the pressure pulse. Am. J. Physiol., 153: 298.PubMedGoogle Scholar
  33. Shapiro, A.H., 1977, Steady flow in collapsible tubes. J. Biomech. Eng. Trans. of ASME., 99: 126.CrossRefGoogle Scholar
  34. Shoukas A.A., and Sagawa, K., 1973, Control of total systemic vascular capacity by the carotid sinus baroreceptor reflex. Circ. Res., 33: 22.PubMedCrossRefGoogle Scholar
  35. Shoukas, A., and Sagawa, K., 1971, Total systemic vascular compliance measured as incremental volume-pressure ratio. Circ. Res., 28: 277.PubMedCrossRefGoogle Scholar
  36. Simon, A.C., Safar, M.E., Levenson, J.A., London, M., Levy, B.I., and Chau, N.P., 1979, An evaluation of large arteries compliance in man. Am. J. Physiol., 237: H550.PubMedGoogle Scholar
  37. Simon, A.C., Safar, M.E., Levenson, J.A., and Levy, B.I., 1979, Systolic hypertension: hemodynamic mechanism and choice of antihypertensive treatment. Am. J. Cardiol., 44: 505.PubMedCrossRefGoogle Scholar
  38. Smiseth, O.A., Manyari, D.E., Lima, J.A., Scott-Douglas, N.W., Kingma, I., Smith, E.R., and Tyberg, J.V., 1987, Modulation of vascular capacitance by angiotensin and nitroprusside: a mechanism of changes in pericardial pressure. Circulation, 76: 875.PubMedCrossRefGoogle Scholar
  39. Ting, C.E., Brin, K.P., Lin, S.J., Wang, S.P., Chang, M.S., Chiang, B.N., and Yin, F.C.P., 1986, Arterial Hemodynamics in Human Hypertension. J. Clin. Invest., 78: 1462.Google Scholar
  40. Toorop, G.P., Westerhof, N., and Elzinga, G., 1987, Beat-to-beat estimation of peripheral resistance and arterial compliance during pressure transients. Am. J. Physiol., 252: H1275.PubMedGoogle Scholar
  41. Ventura, H.F.H., Messerli, W., Oigman, D.H., Suarex, G.R., Dreslinski, F.G., Dunn, E., and Reisin, E.D., Frohlich, 1984, Impaired systemic arterial compliance in borderline hypertension. Am. Heart J. 108:.Google Scholar
  42. Westerhof, N., Elzinga, G., and Sipkema, P., 1971, An artificial arterial system for pumping hearts, J. Appl. Physiol., 31: 776.PubMedGoogle Scholar
  43. Wille, H.H., Sauer, G., Tebbe, U., Neuhaus, K.L., and Kreuzer, H., 1980, Nitroglycerin and afterload: effects of aortic compliance and capacity of the Windkessel. Eur. Heart J., 1: 445.PubMedGoogle Scholar
  44. Yin, F.C.P., Guzman, P.A., Brin, K.P., Maughan, W.L., Brinker, J.A., Traill, T.A., Weiss, J.L., and Weisfeldt, M.L., 1983, Effect of nitroprusside on hydraulic vascular load on the right and left ventricle of patients with heart failure. Circulation, 67: 1330.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Frank C. P. Yin
    • 1
    • 2
  • Zhaorong Liu
    • 3
  1. 1.Department of MedicineJohns Hopkins Medical InstitutionsBaltimoreUSA
  2. 2.Department of PhysiologyJohns Hopkins Medical InstitutionsBaltimoreUSA
  3. 3.Department of Applied MechanicsFudan UniversityShanghaiChina

Personalised recommendations