Advertisement

Role of Endothelial Cells in the Control of Vascular Tone

  • Rudi Busse
  • Ulrich Pohl
Part of the NATO ASI Series book series (volume 166)

Abstract

The vascular endothelium lining the entire circulatory system has a variety of biological functions. It is involved in the regulation of the actions of hemostatic (Stern et al., 1986) and inflammatory compounds in the blood (Bevilacqua and Gimbrone Jr, 1987), and in mass transport across the vascular wall (Caro et al., 1985 (abstract)), as well as in modulation of immune responses (Harlan, 1987) and in vascular cell growth (DiCorleto, 1984). In addition, the endothelium plays a decisive role in the control of vascular tone. It has become evident only in recent years that the endothelium can, by the release of autacoids, induce significant smooth muscle relaxation resulting in increases of blood flow. Of particular interest among these autacoids is endothelium-derived relaxant factor (EDRF) (Furchgott, 1983). It is important to note that a variety of agonists simultaneously stimulate vascular smooth muscle receptors, inducing vasoconstriction, and endothelial receptors, inducing release of EDRF (Bassenge and Busse, 1988). Therefore the presence of an intact endothelium is a significant factor in the net response of vessels to many vasoactive compounds. This chapter will deal with several aspects of this endothelium-mediated control of vascular tone and hence blood flow. Following a brief survey of some properties of EDRF, there will be a discussion of factors that, under physiologic conditions, stimulate and maintain the production of this autacoid. Evidence will also be presented for a role for EDRF in the control of local vascular resistance in vivo and as an inhibitor of platelet activation.

Keywords

Soluble Guanylate Cyclase Intact Endothelium Vascular Smooth Muscle Relaxation Femoral Blood Flow Entire Circulatory System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azuma, H., Ishikawa, M., and Sekizaki, S., 1986, Endothelium-dependent inhibition of platelet aggregation, Br. J. Pharmacol., 88: 411.PubMedCrossRefGoogle Scholar
  2. Bassenge, E., and Pohl, U., 1986, Two principles of large artery dilation: indirect endothelium-mediated and direct smooth muscle relaxation. in: Central and peripheral mechanisms of cardiovascular regulation. E. Magro, W. Osswald, O. Reis, and P.Vanhoutte eds., Plenum Press New York-London, NATO Adv. Sci. Inst. Series A: Life Sciences, 109:pp. 163.Google Scholar
  3. Bassenge, E., Busse, R., and Pohl, U., 1987, Abluminal release and asymmetrical response of the rabbit arterial wall to endothelium-derived relaxing factor, Circ.Res., 61(Suppl.II):II68.Google Scholar
  4. Bassenge, E., and Busse, R., 1988, Endothelial modulation of coronary tone, Prog. Cardiovasc. Dis., 30: 349.PubMedCrossRefGoogle Scholar
  5. Bevilacqua, M. P., and Gimbrone Jr, M. A., 1987, Inducible endothelial functions in inflammation and coagulation, Semin. Thromb. Hemost., 13: 425.PubMedCrossRefGoogle Scholar
  6. Busse, R., Förstermann, U., Matsuda, H., and Pohl, U., 1984, The role of prostaglandins in the endothelium-mediated vasodilatory response to hypoxia, Pflügers Arch., 401: 77.PubMedCrossRefGoogle Scholar
  7. Busse, R., Lückhoff, A., and Bassenge, E., 1987, Endothelium-derived relaxant factor inhibits platelet activation, Naunyn-Schmiedebergs Arch. Pharmacol., 336: 566.PubMedGoogle Scholar
  8. Busse, R., Fichtner, H., Lückhoff, A., and Kohlhardt, M., 1988a, Hyperpolarization and increased free calcium in acetylcholine-stimulated endothelial cells, Am. J. Physiol., 255: H965.PubMedGoogle Scholar
  9. Busse, R., Ogilvie, A., and Pohl, U., 1988b, Vasomotor activity of diadenosine triphosphate and diadenosine tetraphosphate in isolated arteries, Am. J. Physiol., 254: H828.PubMedGoogle Scholar
  10. Caro, C. G., Lever, M. J., and Tarbell, J. M., 1985 (abstract), Effect of luminal flow rate on transmural fluid flux in the perfused rabbit common carotid artery, J. Physiol. (London), 365: 92 P.Google Scholar
  11. DiCorleto, P. E., 1984, Cultured endothelial cells produce multiple growth factors for connective tissue cells, Exp. Cell Res., 153: 167.PubMedCrossRefGoogle Scholar
  12. Feletou, M., and Vanhoutte, P. M., 1988, Endothelium-dependent hyperpolarization of canine coronary smooth muscle, Br. J. Pharmacol., 93: 515.PubMedCrossRefGoogle Scholar
  13. Förstermann, U., Hertting, G., and Neufang, B., 1984a, The importance of endogenous prostaglandins other than prostacyclin for the modulation of contractility of some rabbit blood vessels, Br. J. Pharmacol., 81: 623.PubMedCrossRefGoogle Scholar
  14. Förstermann, U., Trogisch, G., and Busse, R., 1984b, Species-dependent differences in the nature of endothelium-derived vascular relaxing factor, Eur. J. Pharmacol., 106: 639.PubMedCrossRefGoogle Scholar
  15. Förstermann, U., Mülsch, A., Böhme, E., and Busse, R., 1986, Stimulation of soluble guanylate cyclase by an acetylcholine-induced endothelium-derived factor from rabbit and canine arteries, Circ. Res., 58: 531.PubMedCrossRefGoogle Scholar
  16. Furchgott, R. F., 1983, Role of endothelium in responses of vascular smooth muscle, Circ. Res., 53: 557.PubMedCrossRefGoogle Scholar
  17. Furlong, B., Henderson, A. H., Lewis, M. J., and Smith, J. A., 1987, Endothelium-derived relaxant factor inhibits in vitro platelet aggregation, Br. J. Pharmacol., 90: 687.PubMedCrossRefGoogle Scholar
  18. Gaehtgens, P., Benner, K. U., and Schickendantz, S., 1976, Nutritive and non-nutritive blood flow in canine skeletal muscle after microembolization, Pflügers Arch., 361: 183.PubMedCrossRefGoogle Scholar
  19. Gerritsen, M. E., 1987, Functional heterogeneity of vascular endothelial cells, Biochem. Pharmacol., 36: 2701.PubMedCrossRefGoogle Scholar
  20. Griffith, T. M., Edwards, D. H., Lewis, M. J., Newby, A. C., and Henderson, A. H., 1984, The nature of endothelium-derived vascular relaxant factor, Nature, 308: 645.PubMedCrossRefGoogle Scholar
  21. Griffith, T. M., Edwards, D. H., Davies, R. L. I., Harrison, T. J., and Evans, K. T., 1987, EDRF coordinates the behaviour of vascular resistance vessels, Nature, 329: 442.PubMedCrossRefGoogle Scholar
  22. Harlan, J. M., 1987, Consequences of leukocyte-vessel wall interactions in inflammatory and immune reactions, Semin. Thromb. Hemost., 13: 434.CrossRefGoogle Scholar
  23. Huang, A. H., Busse, R., and Bassenge, E., 1988, Endothelium-dependent hyperpolarization of arterial smooth muscle is not mediated by EDRF, Naunyn-Schmiedebergs Arch. Pharmacol., 338: 406.Google Scholar
  24. Ignarro, L. J., Harbison, R. G., Wood, K. S., and Kadowitz, P. J., 1986, Activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor from intrapulmonary artery and vein: stimulation by acetylcholine, bradykinin and arachidonic acid, J. Pharmacol. Exp. Ther., 237: 893.PubMedGoogle Scholar
  25. Jackson, W. F., and Duling, B. R., 1983, The oxygen sensitivity of hamster cheek pouch arterioles. In vitro and in situ studies, Circ. Res., 53: 515.Google Scholar
  26. Kamiya, A., and Togawa, T., 1980, Adaptive regulation of wall shear stress to flow change in the canine carotid artery, Am. J. Physiol., 239: H14PubMedGoogle Scholar
  27. Kauser, K., Stekiel, W. J., and Harder, D. R., 1988 (abstract), Possible hyperpolarizing action of EDRF on arterial muscle, FASEB J., 2: A315Google Scholar
  28. Komori, K., and Suzuki, H., 1987, Electrical responses of smooth muscle cells during cholinergic vasodilation in the rabbit saphenous artery, Circ. Res., 61: 586.PubMedCrossRefGoogle Scholar
  29. Löscher, T. F., and Vanhoutte, P. M., 1986, Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat, Hypertension, 8: 344.CrossRefGoogle Scholar
  30. Lund, N., Ödman, S., and Lewis, D. H., 1980, Skeletal muscle oxygen pressure fields in rats. A study of the normal state and the effects of local anaesthetics, local trauma and haemorrhage, Acta Anaesth. Scand., 24: 155.PubMedCrossRefGoogle Scholar
  31. Martin, W., Villani, G. M., Jothianandan, D., and Furchgott, R. F., 1985, Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta, J. Pharmacol. Exp. Ther., 232: 708.PubMedGoogle Scholar
  32. Mülsch, A., Böhme, E., and Busse, R., 1987, Stimulation of soluble guanylate cyclase by endothelium-derived relaxing factor from cultured endothelial cells, Eur. J. Pharmacol., 135: 247.PubMedCrossRefGoogle Scholar
  33. Mülsch, A., Busse, R., Liebau, S., and Förstermann, U., 1988 (in press), LY 83583 interferes with the release of endothelium-derived relaxant factor and inhibits soluble guanylate cyclase, J. Pharmacol. Exp. Ther. Google Scholar
  34. Olesen, S. P., Clapham, D. E., and Davies, P. F., 1988, Haemodynamic shear stress activates a K* current in vascular endothelial cells, Nature, 331: 168.PubMedCrossRefGoogle Scholar
  35. Palmer, R. M. J., Ferrige, A. G., and Moncada, S., 1987, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature, 327: 524.PubMedCrossRefGoogle Scholar
  36. Peach, M. J., Singer, H. A., and Loeb, A. L., 1985, Mechanisms of endothelium-dependent vascular smooth muscle relaxation, Biochem. Pharmacol., 34: 1867.PubMedCrossRefGoogle Scholar
  37. Pittman, R. N., and Duling, B. R., 1973, Oxygen sensitivity of vascular smooth muscle. I.In vitro studies, Microvasc. Res., 6: 202.PubMedCrossRefGoogle Scholar
  38. Pohl, U., Busse, R., and Kessler, M., 1982, Vascular resistance and tissue pO2 in skeletal muscle during perfusion with hypoxic blood. in: Cardiovascular system dynamics, T. Kenner, R. Busse and H. Hinghofer-Szalkay H., eds., Plenum Press New York-London 1982, pp 521.Google Scholar
  39. Pohl, U., Förstermann, U., Busse, R., and Bassenge, E., 1985, Endothelium-mediated modulation of arterial smooth muscle tone and PGI2- release: pulsatile versus steady flow. in: Schrör, ed., Prostaglandins and other eicosanoids in the cardiovascular system. Karger Basel 1985, pp 553.Google Scholar
  40. Pohl, U., Busse, R., Kuon, E., and Bassenge, E., 1986a, Pulsatile perfusion stimulates the release of endothelial autacoids, J. Appl. Cardiol., 1: 215.Google Scholar
  41. Pohl, U., Holtz, J., Busse, R., and Bassenge, E., 1986b, Crucial role of endothelium in the vasodilator response to increased flow in vivo, Hypertension, 8: 37.Google Scholar
  42. Pohl, U., Dézsi, L., Simon, B., and Busse, R., 1987, Selective inhibition of endothelium-dependent dilation in resistance-sized vessels in vivo, Am. J. Physiol., 253: H234.PubMedGoogle Scholar
  43. Pohl, U., and Busse, R., 1988 (submitted), Hypoxia enhances the release of endothelium-derived relaxant factor (EDRF), Am. J. Physiol. Google Scholar
  44. Pohl, U., Busse, R., and Bassenge, E., 1988 (in press), EDRF-induced augmentation of cGMP levels in platelets passing through the coronary vascular bed, Circulation Google Scholar
  45. Radomski, M. W., Palmer, R. M. J., and Moncada, S., 1987, The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium, Biochem. Biophys. Res. Commun., 148: 1482.PubMedCrossRefGoogle Scholar
  46. Rodbard, S., 1975, Vascular caliber, Cardiology, 60: 4.PubMedCrossRefGoogle Scholar
  47. Rubanyi, G. M., Romero, J. C., and Vanhoutte, P. M., 1986, Flow-induced release of endothelium-derived relaxing factor, Am. J. Physiol., 250: H1145.PubMedGoogle Scholar
  48. Schretzenmayr, A., 1933, Über kreislaufregulatorische Vorgänge an den großen Arterien bei der Muskelarbeit, Pflügers Arch. Ges. Physiol., 232: 743.CrossRefGoogle Scholar
  49. Smiesko, V., Kozik, J., and Dolezel, S., 1985, Role of endothelium in the control of arterial diameter by blood flow, Blood Vessels, 22: 247.PubMedGoogle Scholar
  50. Stern, D. M., Carpenter, B., and Nawroth, P. P., 1986, Endothelium and the regulation of coagulation, Pathol. Immun., 5: 29.CrossRefGoogle Scholar
  51. Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Yazaki, Y., Goto, K., and Masak, T., 1988, A novel potent vasoconstrictor peptide produced by vascular endothelial cells, Nature, 332: 411.PubMedCrossRefGoogle Scholar
  52. Zetter, B. R., 1981, The endothelial cells of large and small blood vessels, Diabetes, 30 (Supp1.3): 24.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Rudi Busse
    • 1
  • Ulrich Pohl
    • 1
  1. 1.Department of Applied PhysiologyUniversity of FreiburgFreiburgFederal Republic of Germany

Personalised recommendations