Appearance of Albumin-Producing Cells in the Liver of Analbuminemic Rats on Aging and Administration of Mutagens

  • Hiroyasu Esumi
  • Yuri Takahashi
  • Reiko Makino
  • Shigeaki Sato
  • Takashi Sugimura
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 190)


The lack in serum albumin in analbuminemic rats, a strain derived from Sprague-Dawley rats, was found to be due to deficient synthesis of albumin in the liver caused by a disturbance in the processing of albumin mRNA. The serum albumin gene was cloned from analbuminemic rats and from parental normal Sprague-Dawley rats. Analyses of the nucleotide sequences of these albumin genes revealed that there is a seven base pair deletion in the HI intron of the albumin gene of analbuminemic rats. This deletion extends from the 5th to the 11th base of the 5’-end of the intron causing change in the nucleotide sequence of the 5’-end of the HI intron from GTAGGTT to GTAGCGA. The HI intron sequence was found to be accumulated in the nuclear RNA of analbuminemic rat liver indicating blocking of mRNA splicing.

Although analbuminemic rats are almost completely deficient in serum albumin, a small but appreciable amount of "albumin" was detected in their serum. This protein was purified by immunoprecipitation and SOS-gel electrophoresis and shown to have the same immunological crossreactivity and digestion patterns with V8 protease and papain as those of normal rat serum albumin. The concentration of “albumin” increased slightly upon aging of analbuminemic rats. The existence of serum albumin in hepatocytes of analbuminemic rats was studied immunohistochemically by the peroxidase anti-peroxidase method. There were about 1/105 albumin-positive cells, presumably albumin-producing hepatocytes at birth, and their number increased gradually to 100~200/104 about 24 months after birth. When the hepatocarcionogenic mutagen 3′-methyl-4-dimethylaminoazobenzene was administered to analbuminemic rats, the number of albumin-positive cells in the liver increased 8-fold in 5 weeks and 10-fold in 15 weeks. A similar increase was observed after administration of acetylaminofluorene, but not after partial hepatectomy or administration of diethylnitrosamine.


mRNA Splice Base Pair Deletion Albumin Gene 11th Base Albumin mRNA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alwine, J.C., Kemp. D.J. and Stark, G.R. (1977), Proc. Natl. Acad. Sci., USA, 74: 5350.PubMedCrossRefGoogle Scholar
  2. Amara, S.G., Jonas, V., Rosenfeld, M.G., Ong, E.S. and Evans, R.M. (1982), Nature, 298: 240.PubMedCrossRefGoogle Scholar
  3. Ando, S., Kon, K., Tanaka, T., Nagase, S. and Nagai, Y., (1980), J. Biochem., 87: 1859.PubMedGoogle Scholar
  4. Benhold, H., Peters, H. and Poth, E., (1954), Verh. Deut. Ges. Inn. Med., 60: 630.Google Scholar
  5. Benton, W.D. and Davies, R.W. (1977), Science, 196: 180.PubMedCrossRefGoogle Scholar
  6. Boman, H., Hermodson, M., Hammond, C.A. and Motulsky, A.G. (1976), Clinical Genetics, 9: 513.PubMedCrossRefGoogle Scholar
  7. Breathnach, R. Benoist, C., O’Hare, K., Gannon, F. and Chambon, P. (1978), Proc. Natl. Acad. Sci., USA, 75: 4853.PubMedCrossRefGoogle Scholar
  8. Crick, F. (1979), Science, 204: 264.PubMedCrossRefGoogle Scholar
  9. Esumi, H., Sato, S., Okui, M. Sugimura, T. and Nagase, S. (1979), Biochem. Biophys. Res. Commun., 87: 1191.PubMedCrossRefGoogle Scholar
  10. Esumi, H., Okui, M., Sato, S., Sugimura, T. and Nagase, S., (1980), Proc. Natl. Acad. Sci., USA, 77: 3215.PubMedCrossRefGoogle Scholar
  11. Esumi, H., Takahashi, Y., Sekiya, T., Sato, S., Nagase, S. and Sugimura, T. (1982), Proc. Natl. Acad. Sci., USA, 79: 734.PubMedCrossRefGoogle Scholar
  12. Esumi, H., Takahashi, Y., Sato, S., Nagase, S. and Sugimura, T. (1983), Proc. Natl. Acad. Sci., USA, 80: 95.PubMedCrossRefGoogle Scholar
  13. Felber, B.K., Orkins, S.H. and Hamer, D.H. (1982), Cell, 29:895. Hayashi, K. (1980), Gene, 11: 109.Google Scholar
  14. Houseman, D., Forget, B.G., Skoultchi, A. and Benz, E.J. (1973), Proc. Natl. Acad. Sci., USA, 70: 1809.CrossRefGoogle Scholar
  15. Kioussis, D., Hamilton, R., Hanson, R.W., Tilghman, S.M. and Taylor, J.M. (1979), Proc. Natl. Acad. Sci., USA, 76: 4370.PubMedCrossRefGoogle Scholar
  16. Lerner, M.R., Boyle, J.A., Mount, S.M., Wolin, S.L. and Steitz, J.A. (1980), Nature, 283: 220.PubMedCrossRefGoogle Scholar
  17. Maki, R., Roeder, W., Traunecker, A., Sidman, C., Wabl, M., Raschke, W. and Tonegawa, S. (1981), Cell, 24: 353.PubMedCrossRefGoogle Scholar
  18. Makino, R., Esumi, H., Sato, S., Takahashi, Y., Nagase, S. and Sugimura, T. (1982), Biochem. Biophys, Res. Commun., 106:863.CrossRefGoogle Scholar
  19. Ilaniatis, T., Hardison, R.C., Lacy, E., Laur, J., O’Connell, C. and Muon, D. (1978), Cell, 15: 687.CrossRefGoogle Scholar
  20. Maxam, A.W. and Gilbert, W. (1977), Proc. Natl. Acad. Sci., USA, 74: 560.PubMedCrossRefGoogle Scholar
  21. Mount, S.M. (1982), Nucleic Acids Res 10: 459.PubMedCrossRefGoogle Scholar
  22. Nagase, S., Shimamune, K. and Shumiya, S., (1979), Science, 205: 590.PubMedCrossRefGoogle Scholar
  23. Nagase, S., Shimamune, K. and Shumiya, S., (1980), Exp. Anim. 29: 33.Google Scholar
  24. Peters, T. Jr., (1962), J. Biol. Chem. 237: 1181.PubMedGoogle Scholar
  25. Sargent, T.D., Wu, J., Sala-Trepat, J.M., Wallace, R.B., Reyes, A.A. and Bonner, J., (1979), Proc. Natl. Acad. Sci., USA, 76: 3256.PubMedCrossRefGoogle Scholar
  26. Sargent, T.D., Jagodinski, L.L., Yang, M. and Bonner, J. (1981), Mol. Cell. Biol., 1: 871.PubMedGoogle Scholar
  27. Southern, E.M. (1975), J. Mol. Biol. 98: 503.PubMedCrossRefGoogle Scholar
  28. Spritz, R.A., Jagadeeswaran, P., Choudary, P.V., Biro, P.A., Elder, J.T., deRiel, J.K., Manley, J.L., Gefter, M.L., Forget, B.G. and Weissman, S.M. (1981), Proc. Natl. Acad. Sci., USA, 78: 2455.PubMedCrossRefGoogle Scholar
  29. Taylor, C.R. (1978), J. distochem. Cytochem. 26: 496.CrossRefGoogle Scholar
  30. Tresman, R., Proudfoot, N.J., Shander, M. and Mantiatis, T. (1982), Cell, 29: 903.CrossRefGoogle Scholar
  31. Wahl, G.M., Stern, M. and Stark, G.R., (1979), Proc. Natl. Acad. Sci., USA, 76: 3683.PubMedCrossRefGoogle Scholar
  32. Westaway, D. and Williamson, R. (1981), Nucleic Acids Res., 9:1777. Wieringa, B., Meyer, F., Reiser, J. and Weisman, C. (1982), Proc.Cetus-UCLA Symposium on Gene Regulation, (in press)Google Scholar
  33. Yang, V.W., Lerner, M.R., Steitz, J.A. and Flint, S.J. (1981),Proc. Natl. Acad. Sci., USA, 78:1371PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Hiroyasu Esumi
    • 1
  • Yuri Takahashi
    • 1
  • Reiko Makino
    • 2
  • Shigeaki Sato
    • 2
  • Takashi Sugimura
    • 2
  1. 1.Virology DivisionNational Cancer Center Research InstituteChuo-ku, TokyoJapan
  2. 2.Biochemistry DivisionNational Cancer Center Research InstituteChuo-ku, TokyoJapan

Personalised recommendations