Advertisement

Extrachromosomal Circular DNA and Aging Cells

  • Charles K. LumpkinJr.
  • John R. McGill
  • Karl T. Riabowol
  • E. J. Moerman
  • Robert J. Shmookler Reis
  • Samuel Goldstein
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 190)

Abstract

A DNA sequence situated in the human genome between Alu-repeat clusters (“Inter-Alu” DNA) is progressively amplified in extrachromosomal DNA, including covalently closed DNA circles, during serial passage of diploid fibroblasts. A single size-class of Inter-Alu circles is also amplified in lymphocytes from 16 of 24 old donors and yet is not detected in cells from 18 young donors.

Keywords

Late Passage Human Diploid Fibroblast Young Donor Fibroblast Strain Extrachromosomal Copy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baltimore, D., 1981, Gene conversion: some implications for immunoglobulin genes, Cell, 24: 592–594.PubMedCrossRefGoogle Scholar
  2. Birnboim, H. C., and Doly, J., 1979, A rapid alkaline extraction procedure for screening recombinant plasmid DNA, Nucleic Acids Res., 7: 1513–1523.PubMedCrossRefGoogle Scholar
  3. Boyum, A., 1976, Isolation of lymphocytes, granulocytes and macrophages, Scand. J. Immunol. 5:9.Google Scholar
  4. Brown, D. D., and Blackler, A. W., 1972, Gene amplification proceeds by a chromosome copy mechanism, J. Mol. Biol. 63:75–83.Google Scholar
  5. Calabretta, B., Robberson, D. L., Barrera Saldana, H. A., Lambrou,T. P., and Saunders, G. F., 1982, Genome instability in a region of human DNA enriched in Alu repeat sequences, Nature, 296: 219.PubMedCrossRefGoogle Scholar
  6. Calos, M. P., and Miller, J. H., 1980, Transposable elements, Cell, 20: 579–595.PubMedCrossRefGoogle Scholar
  7. German, J., 1972, Genes which increase chromosomal instability in somatic cells and predispose to cancer, in: “Progress in Medical Genetics,” Vol. 8, Grune and Stratton, Inc., New York.Google Scholar
  8. Gillis, S., Kozak, R., Durante, M., and Weksler, M., 1981, Immuno-logical studies of aging: decreased production of and re-sponse to T cell growth factor by lymphocyte from aged humans,J. Clin. Invest., 67: 937–942.Google Scholar
  9. Green, M. M., 1980, Transposable elements on Drosophila and other diptera, Am. Rev. Genet. 14:109–120.Google Scholar
  10. Grimaldi, G., and Singer, M. F., 1982, A monkey Alu sequence is flanked by a 13 base pair direct repeats of an interrupted a-satellite DNA sequence, Proc. Natl. Acad. Sci. 79:1497–1500.Google Scholar
  11. Gupta, S., and Good, R. A., 1979, Subpopulations of human T lymphocytes, J. Immunol. 122:1214–1219.Google Scholar
  12. Harley, C. B., and Goldstein, S., 1978, Cultured human fibroblasts: distribution of cell generations and a critical limit, J. Cell. Physiol 97:509.Google Scholar
  13. Hayflick, L., 1977, The cellular basis for biological aging, in:“Handbook of the Biology of Aging,” C. E. Finch and L.Hayflick, eds., Van Nostrand Reinhold Co., New York, p. 159. Hayflick, L., and Moorhead, P. S., 1961, The serial cultivation of human diploid cell strains, Exp. Cell Res. 25:585–621.Google Scholar
  14. Hoehn, H., Bryant, E. M., Norwood, T. H., Boman, H., and Martin, G.M., 1975, Variegated translocation mosaicism in human skin fibroblast cultures, Cytogenet. Cell. Genet. 15:282–298.Google Scholar
  15. Krolewski, J. J., Berlelsen, A. H., Humayun, H. Z., and Rush, M.G., 1982, Members of the Alu family of interspersed,repetitive DNA sequences are in the small circular DNA population of monkey cells grown in culture, J. Mol. Biol. 154:399415.Google Scholar
  16. Martin, G. M., 1982, Syndromes of accelerated aging, Nat. Cancer Instit. Monog. No. 60:241–247.Google Scholar
  17. Norwood, T. H., Hoehn, H., Salk, D., and Martin, G. M., 1979, Cellular aging in Werners’ syndrome: a unique phenotype?, J. Invest. Derm. 73:92–96.Google Scholar
  18. Salk, D., Bryant, E., Au, K., Hoehn, H., and Martin, G. M., 1981a, Systematic growth studies, cocultivation and cell hybridization studies of Werners’ syndrome cultured skin fibroblasts, Human Genet 58: 310–316.Google Scholar
  19. Salk, D., Au, K., Hoehn, H., and Martin, G. M., 1981b, Cytogenetics of Werners’ syndrome cultured skin fibroblasts: variegated translocation mosaicism, Cytogenet. Cell. Genet. 30:92–107.Google Scholar
  20. Scherer, S., and Davis, R. W., 1980, Recombination of dispersed repeated DNA sequences in yeast, Science 209: 1380–1384.Google Scholar
  21. Schmid, C. W., and Jelinek, W. R., 1982, The Alu family of dis- persed repetitive sequences, Science 216: 1065–1070.Google Scholar
  22. Shmookler Reis, R. J., and Goldstein, S., 1980, Loss of reiterated DNA sequences during serial passage of human diploid fibroblasts, Cell, 21: 739.CrossRefGoogle Scholar
  23. Shmookler Reis, R. J., and Goldstein, S., 1982, Variability of DNA methylation patterns during serial passage of human diploid fibroblasts, Proc. Natl. Acad. Sci. 79, in press.Google Scholar
  24. Shmookler Reis, R. J., Lumpkin, C. K., McGill, J. R., Riabowol, K. T., and Goldstein, S., 1983a, Genome instability during in vitro and in vivo aging: amplification of extrachromosomal circular DNA molecules containing a chromosomal sequence of variable repeat frequency, Cold Spring Harbor Symposium on Quantitative Biology Vol. 47, Structure of DNA, in press.Google Scholar
  25. Shmookler Reis, R. J., Lumpkin, C. K., McGill, J. R., Riabowol, K. T., and Goldstein, S., 1983b, Extrachromosomal copies of an inter-Alu unstable element in human DNA are amplified during in vitro and in vivo aging, Nature in press.Google Scholar
  26. Smith, C. A., and Vinograd, J., 1972, Small polydisperse circular DNA of Hela cells, J. Mol. Biol. 69:163.Google Scholar
  27. Smith, C. A., Jordan, J. M., and Vinograd, J., 1971, In vivo effects of intercalatory drugs on the superhelix density of mitochondrial DNA isolated from human and mouse cells in culture, J. Mol. Biol. 59:255–272.Google Scholar
  28. Stanfield, S., and Helinski, D. R., 1976, Small circular DNA in Drosophila melanogaster, Cell, 9: 333.PubMedCrossRefGoogle Scholar
  29. Walton, J., 1982, The role of limited cell replicative capacity in pathological age change, a review, Mech. Aging & Dev. 19:217244.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Charles K. LumpkinJr.
  • John R. McGill
    • 1
    • 2
  • Karl T. Riabowol
    • 1
    • 2
  • E. J. Moerman
    • 1
    • 2
  • Robert J. Shmookler Reis
    • 1
    • 2
  • Samuel Goldstein
    • 1
    • 2
  1. 1.Departments of Medicine and BiochemistryUniversity of Arkansas for Medical SciencesLittle RockUSA
  2. 2.Geriatric Research Education and Clinical CenterVeterans Administration Medical CenterLittle RockUSA

Personalised recommendations