The Ultradian Clock: Timekeeping for Intracellular Dynamics

  • David Lloyd
  • Evgenii I. Volkov
Part of the NATO ASI Series book series (NSSB, volume 270)


“One good experiment is worth a thousand models” (BÜNNING); but one good model can make a thousand experiments unnecessary.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Lloyd, R. K. Poole, and S. W. Edwards, “The Cell Division Cycle: Temporal Organization and Control of Cellular Growth and Reproduction”, Academic Press, London (1982).Google Scholar
  2. 2.
    D. Lloyd, The cell division cycle, Biochem. J. 242:313 (1987)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    G. Turner and D. Lloyd, Effects of chloramphenicol on growth and mitochondrial function of the ciliate Protozoon Tetrahymena pyriformis strain ST, J. Gen. Microbiol. 67:175 (1971).CrossRefGoogle Scholar
  4. 4.
    L. N. Edmunds Jr., Physiology of circadian rhythms in microorganisms, Adv. Microb. Physiol. 25:61 (1984).CrossRefPubMedGoogle Scholar
  5. 5.
    D. Noble, “The Initiation of the Heartbeat” Clarendon Press, Oxford (1975).Google Scholar
  6. 6.
    E. Bünning, “The Physiological Clock, Circadian Rhythms and Biological Chronometry, 3rd Edition, English Universities Press, London (1973).Google Scholar
  7. 7.
    B. C. Goodwin and M. H. Cohen, A phase-shift model for spatial and temporal organization in developing systems. J. Theor. Biol. 25:59 (1969).CrossRefGoogle Scholar
  8. 8.
    V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, J. Theor. Biol. 42:63 (1973).CrossRefPubMedGoogle Scholar
  9. 9.
    P. E. Rapp, A. I. Mees, and C. T. Sparrow, Frequency dependent biochemical regulation is more accurate than amplitude dependent control, J. Theor. Biol. 90:531 (1981).CrossRefGoogle Scholar
  10. 10.
    P. H. Richter and J. Ross, Concentration oscillations and efficiency: Glycolysis, Science 211:715 (1981).CrossRefPubMedGoogle Scholar
  11. 11.
    D. Lloyd and S. W. Edwards, Temperature-compensated ultradian rhythms in lower eukaryotes: periodic turnover coupled to a timer for cell division, J. Interdiscipl. Cycle Res. 77:321 (1986).CrossRefGoogle Scholar
  12. 12.
    D. Lloyd and S. W. Edwards, Oscillations of respiration and adenine nucleotides in synchronous cultures of Acanthamoeba castellanii: mitochondrial respiratory control in vivo, J. Gen. Microbiol. 108:197 (1978).CrossRefGoogle Scholar
  13. 13.
    D. Lloyd and S. W. Edwards, Epigenetic oscillations in synchronous cultures of lower eukaryotes, in “Chronobiology and Chronomedicine: Basic Research and Applications”, G. Hildebrandt, R. Moog and F. Rashke, eds., Peter Lang, Frankfurt am Main (1987).Google Scholar
  14. 14.
    S. W. Edwards and D. Lloyd, Oscillations in protein and RNA content during synchronous growth of Acanthamoeba castellanii: evidence for periodic turnover of macromolecules during the cell cycle, FEBS Lett. 109:21 (1980).CrossRefPubMedGoogle Scholar
  15. 15.
    V. Michel and R. Hardeland, On the chronobiology of Tetrahymena III. Temperature compensation and temperature dependence in the ultradian oscillator of tyrosine aminotransferase, J. Interdiscipl. Cycle Res. 16:17 (1985).CrossRefGoogle Scholar
  16. 16.
    D. Lloyd, S. W. Edwards, J. L. Williams, and J. B. Evans, Mitochondrial cytochromes of Acanthamoeba castellanii: oscillating accumulation of haemoproteins, immunological determinants and activity during the cell cycle, FEMS Lett. 16:307 (1983).CrossRefGoogle Scholar
  17. 17.
    S. W. Edwards, J. B. Evans, and D. Lloyd, Oscillatory accumulation of catalase during the cell cycle of Acanthamoeba castellanii, J. Gen. Microbiol. 125:459 (1981).Google Scholar
  18. 18.
    S. W. Edwards, J. B. Evans, J. L. Williams, and D. Lloyd, Mitochondrial ATPase of Acanthamoeba castellanii: oscillating accumulation of enzyme activity, enzyme protein and F1 — inhibitor during the cell cycle, Biochem. J. 202:453 (1982).CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    D. Lloyd and S. W. Edwards, Epigenetic oscillations during he cell cycles of lower eukaryotes are coupled t o a clock: Life’s slow dance to the music of time, in “Cell Cycle Clocks”, L. N. Edmunds, ed., Marcel Dekker, New York (1984).Google Scholar
  20. 20.
    D. Lloyd and S. W. Edwards, Temperature-compensated ultradian hythms in lower eukaryotes: timers for cell cycle and ircadian events?, in “Advances in Chronobiology, Part A”, E. Pauly and L. E. Scheving, eds., Alan Liss, New York 1987).Google Scholar
  21. 21.
    D. Lloyd, S. W. Edwards, and J. C. Fry, Temperature-compensated oscillations in respiration and cellular protein content in synochronous cultures of Acanthamoeba castellanii, Proc. Natn. Acad. Sci. U.S.A. 79:3785 (1982).CrossRefGoogle Scholar
  22. 22.
    R. R. Klevecz, Quantized generation times in mammalian cells as an expression of the cellular clock, Proc. Natn. Acad. Sci. U.S.A. 73:4012 (1976).CrossRefGoogle Scholar
  23. 23.
    D. Lloyd and F. Kippert, A temperature-compensated ultradian clock explains temperature-dependent quantal cell cycle times, in “Temperature and Animal Cells”, K. Bowler and B. J. Fuller, eds., Society Experimental Biologists, Cambridge university Press (1987).Google Scholar
  24. 24.
    H. Jenkins, A. J. Griffiths, and D. Lloyd, Simultaneous operation of ultradian and circadian rhythms in light-dark synchronized cultures of Chlamydomonas reinhardii, J. Interdiscip. Cycle Res. 21:75 (1990).CrossRefGoogle Scholar
  25. 25.
    K. J. Adams, Circadian clock control of an ultradian rhythm in Euglena gracilis, in “Chronobiology and Chronomedicine: Basic Research and Applications”, E. Morgan, ed., Peter Land, Frankfurt am Main (1989).Google Scholar
  26. 26.
    D. Lloyd and E. I. Volkov, Quantized cell cycle times: interaction between a relaxation oscillator and ultradian clock pulses, BioSystems 23:305 (1990).CrossRefPubMedGoogle Scholar
  27. 27.
    D. S. Chernavskii, E. K. Palamarchuk, A. A. Polezhaev, G. I. Solyanik, and E. B. Burlakova, Mathematical model of periodic processes in membranes with application to cell- cycle regulation, BioSystems 9:187 (1977).CrossRefPubMedGoogle Scholar
  28. 28.
    A. T. Mustafin and E. I. Volkov, On the distribution of cell cycle generation times, BioSystems 15:111 (1982).CrossRefPubMedGoogle Scholar
  29. 29.
    E. E. Sel’kov, Two alternative self-oscillating stationary states in thiol metabolism — two alternative types of cell division normal and malignant ones, Biophysika 15:1065 (1970).Google Scholar
  30. 30.
    E. Zeuthen, Induced reversal of order of cell division and DNA replication in Tetrahymena, Expl. Cell Res. 116:39 (1978).CrossRefGoogle Scholar
  31. 31.
    D. A. Gilbert, The nature of the cell cycle and the control of cell replication, BioSystems 5:197 (1974).CrossRefGoogle Scholar
  32. 32.
    D. A. Gilbert, The cell cycle 1981. One or more limit cycle cycle oscillations? S. Afr. J. Sci. 77:541 (1981).Google Scholar
  33. 33.
    S. A. Kauffman and J. J. Wille, The mitotic oscillator in Physarum polycephalum, J. Theor. Biol. 55:47 (1975).CrossRefPubMedGoogle Scholar
  34. 34.
    S. Pelech, When cells divide, The Sciences 1:23 (1990).Google Scholar
  35. 35.
    G. F. Gardner and J. F. Feldman, The frq locus in Neurospora crassa: a key element in circadian clock organization, Genetics 96:877 (1980).PubMedPubMedCentralGoogle Scholar
  36. 36.
    C. Helfrich, Untersuchungen über das circadiane System von Fliegen, Dissertation, University of Tübingen, Tübingen (1985).Google Scholar
  37. 37.
    H. B. Dowse and J. M. Ringo, Further evidence that the circadian clock in Drosophila is a population of coupled ultradian oscillators, J. Biol. Rhythm 2:65 (1987).CrossRefGoogle Scholar
  38. 38.
    H. B. Dowse, J. C. Hall, and J. M. Ringo, Circadian and ultradian rhythms in period mutants of Drosophila melanogaster, Behav. Genet. 17:19 (1987).CrossRefGoogle Scholar
  39. 39.
    F. P. Gibbs, Temperature dependence of the hamster circadian pacemaker, Amer. J. Physiol. 244:R607 (1983).PubMedPubMedCentralGoogle Scholar
  40. 40.
    W.-R. von Grosse, Zur endogenen Grundlage der circadianen Activität bei Calliphora vicina R. D., Zool. Jb. Physiol. 89:49 (1985).Google Scholar
  41. 41.
    D. Buttner and F. Wollnick, Strain-differentiated circadian and ultradian rhythms in locomotory activity of laboratory rat, Behav. Genet. 14:137 (1984).CrossRefPubMedGoogle Scholar
  42. 42.
    C. P. Kyriacou and J. C. Hall, Circadian rhythm mutations in Drosophila melanogaster affect a short-term fluctuation in the male courtship song, Proc. Natl. Acad. Sci. U.S.A. 77:6729 (1980).CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • David Lloyd
    • 1
  • Evgenii I. Volkov
    • 2
  1. 1.Institute of BiochemistryOdense UniversityOdense MDenmark
  2. 2.Department of Theoretical BiophysicsP. N. Lebedev InstituteMoscowUSSR

Personalised recommendations