Childhood Infections — Examples of ‘Chaos in the Wild’

  • L. F. Olsen
  • C. G. Steinmetz
  • C. W. Tidd
  • W. M. Schaffer
Part of the NATO ASI Series book series (NSSB, volume 270)


There is a large literature in mathematical biology dealing with the transmission of infectious diseases1,3. A significant part of this literature, which dates back to the early 20th century, concerns childhood epidemics — chicken pox, measles, mumps and rubella — because the biology of these diseases is reasonably well understood and because several decades of monthly or weekly notifications — at least in First World countries — have accumulated in public health records. Thus it appears that childhood infections are part of a well-defined epidemiological system for which real-world data and mathematical models may be profitably compared.


Lyapunov Exponent Bifurcation Diagram Correlation Dimension Epidemic Model Strange Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.S. Bartlett, “Stochastic Population Models in Ecology and Epidemiology,” Methuen, London (1960).Google Scholar
  2. 2.
    N.T.J. Bailey, “The Mathematical Theory of Infectious Diseases and Its Applications,” Griffin, London (1975).Google Scholar
  3. 3.
    R.M. Anderson, ed., “Population Dynamics of Infectious Diseases. Theory and Applications,” Chapman and Hall, New York (1982).Google Scholar
  4. 4.
    L.F. Olsen and H. Degn, Chaos in biological systems, O. Rev. Biophys. 18:165 (1985).CrossRefGoogle Scholar
  5. 5.
    A.V. Holden, ed., “Chaos,” Manchester University Press, Manchester (1986).Google Scholar
  6. 6.
    H. Degn, A.V. Holden and L.F. Olsen, eds., “Chaos in Biological Systems,” NATO ASI Series, Series A, Vol. 138, Plenum, New York (1987).Google Scholar
  7. 7.
    W.M. Schaffer and M. Kot, Nearly one-dimensional dynamics in an epidemic, J. Theor. Biol. 112:403 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    W.M. Schaffer, Can nonlinear dynamics elucidate mechanisms in ecology and epidemiology ?, IMA J. Math. Appl. Med. Biol. 2:221 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    W.M. Schaffer, L.F. Olsen, G.L. Truty, S.L. Fulmer and D.J. Gräser, Periodic and chaotic dynamics in childhood infections, in: “From Chemical to Biological Organization,” M. Markus, S.C. Müller and G. Nicolis, eds., Springer-Verlag, Berlin (1988).Google Scholar
  10. 10.
    L.F. Olsen, G.L. Truty, and W.M. Schaffer, Oscillations and chaos in epidemics: A nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark, Theor. Pop. Biol. 33:344 (1988).CrossRefGoogle Scholar
  11. 11.
    M. Kot, W.M. Schaffer, G.L. Truty, D.J. Gräser and L.F. Olsen, Changing criteria for imposing order, Ecol. Modelling 43:75 (1988).CrossRefGoogle Scholar
  12. 12.
    W.M. Schaffer, L.F. Olsen, G.L. Truty and S.L. Fulmer, The case for chaos in childhood epidemics, in: “The Ubiquity of Chaos,” S. Krasner, ed., American Association for the Advancement of Science, Washington (1990).Google Scholar
  13. 13.
    L.F. Olsen and W.M. Schaffer, Chaos versus noisy periodicity: Alternative hypotheses for childhood epidemics, Science 249:499 (1990).PubMedCrossRefGoogle Scholar
  14. 14.
    F. Drepper, Unstable determinism in the information production profile of an epidemiological time series, in: “Ecodynamics,” W. Wolff, C.-J. Soeder and F.R. Drepper, eds., Springer-Verlag, Berlin (1988).Google Scholar
  15. 15.
    G. Sugihara and R.M. May, Non-linear forecasting as a way of distinguishing chaos from measurement error in time-series, Nature 344:734 (1990).PubMedCrossRefGoogle Scholar
  16. 16.
    W.P. London and J.A. Yorke, Recurrent outbreaks of measles, chicken pox and mumps. I. Seasonal variations in contact rates, Am. J. Epidemiol. 98:453 (1973).PubMedGoogle Scholar
  17. 17.
    “Medical Report for the Kingdom of Denmark,” The National Health Service of Denmark, Copenhagen (1927–1968).Google Scholar
  18. 18.
    A. Wolf, J.B. Swift, H.L. Swinney and J. A. Vastano, Determining Lyapunov exponents from a time series, Physica 16D:285 (1985).Google Scholar
  19. 19.
    P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors, Physica 9D: 189 (1983).Google Scholar
  20. 20.
    A.R. Osborne and A. Provenzale, Finite correlation dimension for stochastic systems with power law spectra, Physica 35D:357 (1989)Google Scholar
  21. 21.
    K. Dietz, The incidence of infectious diseases under the influence of seasonal fluctuations, in: “Lecture Notes in Biomathematics,” Vol. 11, Springer-Verlag, Berlin (1976).Google Scholar
  22. 22.
    R.M. Anderson and R.M. May, Directly transmitted infectious diseases: Control by vaccination, Science 215:1053 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    R.M. Anderson and R.M. May, Age-related changes in the rate of disease transmission: Implications for the design of vaccination programmes, J. Hyg. 94:365 (1985).CrossRefGoogle Scholar
  24. 24.
    P.E.M. Fine and J.A. Clarkson, Measles in England and Wales. I. An analysis of factors underlying seasonal patterns, Int. J. Epidemiol. 11:5 (1982).PubMedCrossRefGoogle Scholar
  25. 25.
    I.B. Schwartz and H.L. Smith, Multiple recurrent outbreaks and predictability in seasonally forced nonlinear epidemic models, J. Math. Biol. 18:233 (1983).PubMedCrossRefGoogle Scholar
  26. 26.
    H. Smith, Periodic solutions for a class of epidemic equations, J. Math. Anal. Appl. 64:476 (1983).Google Scholar
  27. 27.
    LB. Schwartz, Nonlinear dynamics of seasonally driven epidemic models, in: “Biomedical Modeling and Simulation,” J. Eisenfeld and D.S. Levin, eds., J.C. Baltzer, Berlin (1989).Google Scholar
  28. 28.
    D. Ruelle, Sensitive dependence on initial conditions and turbulent behavior in dynamical systems, Ann. N.Y. Acad. Sci. 316:408 (1979).CrossRefGoogle Scholar
  29. 29.
    J.D. Farmer and J.J. Sidorowich, Predicting chaotic time series, Phys. Rev. Lett. 59:845 (1987).PubMedCrossRefGoogle Scholar
  30. 30.
    J.D. Farmer and J.J. Sidorowich, Exploiting chaos to predict the future and reduce noise, preprint (1988).Google Scholar
  31. 31.
    M. Casdagli, Nonlinear prediction of chaotic time series, Physica 35D:335 (1989).Google Scholar
  32. 32.
    U. Kirchgraber and D. Stoffer, Chaotic behavior in simple dynamical systems, SIAM Review 32:424 (1990).CrossRefGoogle Scholar
  33. 33.
    D. Auerbach, P. Cvitanovic, J.-P. Eckmann, G. Gunaratne and I. Procaccia, Exploring chaotic motion through periodic orbits, Phys. Rev. Lett. 58:2387 (1987).PubMedCrossRefGoogle Scholar
  34. 34.
    P. Cvitanovic, G.H. Gunaratne and I. Procaccia, Topological and metric properties of Hénon-type strange attractors, Phys. Rev. A 38:1503 (1988).PubMedCrossRefGoogle Scholar
  35. 35.
    C. Grebogi, E. Ott and J.A. Yorke, Unstable periodic orbits and the dimension of strange attractors, Phys. Rev. A 36:3522 (1988).CrossRefGoogle Scholar
  36. 36.
    D.P. Lathrop and E.J. Kostelich, Analyzing periodic saddles in experimental strange attractors, in: “Measures of Complexity and Chaos,” N.B. Abraham et al., eds., Plenum, New York (1989).Google Scholar
  37. 37.
    L.A. Smith, Quantifying chaos with predictive flows and maps: Locating unstable periodic orbits, in: “Measures of Complexity and Chaos, ” N.B. Abraham et al., eds., Plenum, New York (1989).Google Scholar
  38. 38.
    W.M. Schaffer, Chaos in Ecology and epidemiology, in: “Chaos in Biological Systems,” H. Degn, A.V. Holden and L.F. Olsen, eds., NATO ASI Series, Series A, Vol. 138, Plenum, New York (1987).Google Scholar
  39. 39.
    R. Pool, Is it chaos or is it just noise?, Science 243:25 (1989).PubMedCrossRefGoogle Scholar
  40. 40.
    R.M. May and R.M. Anderson, Population biology of infectious diseases: Part II, Nature 280: 455 (1979).PubMedCrossRefGoogle Scholar
  41. 41.
    J.L. Aron and LB. Schwartz, Seasonality and period-doubling bifurcations in an epidemic model, J. Theor. Biol. 110:665 (1984).PubMedCrossRefGoogle Scholar
  42. 42.
    T. Roenneberg and J. Aschoff, Annual rhythm of human reproduction: I. Biology, sociology or both?, preprint (1989).Google Scholar
  43. 43.
    T. Roenneberg and J. Aschoff, Annual rhythm of human reproduction: II. Environmental correlations, preprint (1989).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • L. F. Olsen
    • 1
  • C. G. Steinmetz
    • 2
  • C. W. Tidd
    • 3
  • W. M. Schaffer
    • 3
  1. 1.Institute of BiochemistryOdense UniversityOdense MDenmark
  2. 2.Department of ChemistryIndiana University-Purdue University at IndianapolisIndianapolisUSA
  3. 3.Department Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA

Personalised recommendations