Modelling of Complex Systems by Simulated Annealing

  • Bjarne Andresen
Part of the NATO ASI Series book series (NSSB, volume 270)


Simulated annealing is a global optimization procedure (Kirkpatrick et al. 1983) which exploits an analogy between combinatorial optimization problems and the statistical mechanics of physical systems. The analogy gives rise to an algorithm for finding near-optimal solutions to the given problem by simulating the cooling of the corresponding physical system. Just as Nature, under most conditions, manages to cool a macroscopic system into or very close to its ground state in a short period of time even though its number of degrees of freedom is of the order of Avogadro’s number, so does simulated annealing rapidly find a good guess of the solution of the posed problem.


Simulated Annealing Simulated Annealing Algorithm Transition Probability Matrix Annealing Schedule Neural Network Ensemble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andresen, B. 1983. Finite-time thermodynamics (Physics Laboratory II, (University of Copenhagen).Google Scholar
  2. Andresen, B.; Hoffmann, K. H.; Mosegaard, K.; Nulton, J.; Pedersen, J. M.; Salamon, P. 1988. On lumped models for thermodynamic properties of simulated annealing problems, J. Phys. (France) 49,1485.CrossRefGoogle Scholar
  3. Boseniuk, T.; Ebeling, W. 1988a. Optimization of NP-complete problems by Boltzmann-Darwin strategies including life cycles, Europhys. Lett. 6, 107.CrossRefGoogle Scholar
  4. Boseniuk, T.; Ebeling, W. 1988b. Evolution strategies in complex optimization: The travelling salesman problem, Syst Anal. Model. Simul. 5, 413.Google Scholar
  5. Ebeling, W. 1990. Applications of evolutionary strategies, Syst. Anal. Model. Simul.. 7, 3.Google Scholar
  6. Feldmann, T.; Andresen, B.; Qi, A.; Salamon, P. 1985. Thermodynamic lengths and intrinsic time scales in molecular relaxation. J. Chem. Phys. 83, 5849.CrossRefGoogle Scholar
  7. Flick, J. D.; Salamon, P.; Andresen, B. 1987. Metric bounds on losses in adaptive coding. Info. Sci. 42, 239.CrossRefGoogle Scholar
  8. Fontana, W.; Schnabl, W.; Schuster, P. 1989. Physical aspects of evolutionary optimization and adaptation, Phys. Rev. A 40, 3301.PubMedCrossRefGoogle Scholar
  9. Hansen, L. K. 1990. at Symposium on Applied Statistics, (UNI-C., Copenhagen); and in preparation.Google Scholar
  10. Hansen, L. K; Salamon, P. 1990. Neural network ensembles, preprint.Google Scholar
  11. Jakobsen, M. O.; Mosegaard, K; Pedersen, J. M. 1987. Global model optimization in reflection Scismology by simulated annealing, in The Mathematical Geophysics Fifth International Seminar on Model Optimization in Exploration Geophysics, (Berlin).Google Scholar
  12. Rirkpatrick, S.; Gelatt, C. D. Jr.; Vecchi, M. P. 1983. Optimization by simulated annealing, Science 220, 671.CrossRefGoogle Scholar
  13. Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. 1953. Equation of state calculations by fast computing machines, J. Chem. Phys. 21,1087.CrossRefGoogle Scholar
  14. Pedersen, J. M.; Mosegaard, K.; Jacobsen, M. O.; Salamon, P. 1990. Optimal degree of parallel implementation in optimization. J. Phys. A. Google Scholar
  15. Rubin, M. H. 1979. Optimal configuration of a class of irreversible heat engines. I, Phys. Rev. A 19,1272.CrossRefGoogle Scholar
  16. Ruppeiner, G. 1988. Nucl. Phys. B (Proc. Suppl.) 5A, 116.Google Scholar
  17. Ruppeiner, G.; Pedersen, J. M.; Salamon, P. 1990. Ensemble approach to simulated annealing. J. Phys. (France). Google Scholar
  18. Salamon, P.; Andresen, B.; Gait, P. D.; Berry, R. S. 1980a. The significance of Weinhold’s length, J. Chem. Phys. 73 1001;CrossRefGoogle Scholar
  19. Salamon, P.; Andresen, B.; Gait, P. D.; Berry, R. S. 1980a. The significance of Weinhold’s length, J. Chem. Phys. 73, 5407E.CrossRefGoogle Scholar
  20. Salamon, P.; Berry, R. S. 1983. Thermodynamic length and dissipated availability, Phys. Rev. Lett. 51, 1127.CrossRefGoogle Scholar
  21. Salamon, P.; Komlos, J.; Andresen, B.; Nulton J. 1987. A geometric view of welfare gains with non-instantaneous adjustment. Math. Soc. Sci. 13,153.CrossRefGoogle Scholar
  22. Salamon, P.; Nitzan, A.; Andresen, B.; Berry, R. S. 1980b. Minimum entropy production and the optimization of heat engines, Phys. Rev. A 21, 2115.CrossRefGoogle Scholar
  23. Salamon, P.; Nulton, J.; Ihrig, E. 1984. On the relation between entropy and energy versions of thermodynamic length. J. Chem. Phys. 80, 436.CrossRefGoogle Scholar
  24. Salamon, P.; Nulton, J.; Robinson, J.; Pedersen, J. M.; Ruppeiner, G.; Liao, L. 1988. Simulated annealing with constant thermodynamic speed.Comp. Phys. Comm. 49, 423.CrossRefGoogle Scholar
  25. Sibani, P.; Pedersen, J. M.; Hoffmann, K. H.; Salamon, P. 1990. Scaling concepts in simulated annealing, preprint.Google Scholar
  26. Weinhold, F. 1975. Metric geometry of equilibrium thermodynamics, J. Chem. Phys. 63,2479.CrossRefGoogle Scholar
  27. Weinhold, F. 1978. Geometrical aspects of equilibrium thermodynamics, in Theoretical chemistry, advances and perspectives, Vol. 3, edited by D. Henderson and H. Eyring (Academic Press, New York).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Bjarne Andresen
    • 1
  1. 1.Physics LaboratoryUniversity of CopenhagenCopenhagen ØDenmark

Personalised recommendations