Probing Dynamics of the Cerebral Cortex

  • A. Babloyantz
Part of the NATO ASI Series book series (NSSB, volume 270)


The central nervous system is certainly one of the most complex biological tissues, as it comprises some 1010 interconnected neurons with thousands of connections per each unit. The flow of information in this intricate network involves a great number of transmitters which modulate the electrical activity characteristic of brain tissue.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Gray, C.M. and Singer, W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sc. USA 86: 1698–1702, 1989.CrossRefGoogle Scholar
  2. [2]
    Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. and Reitboek, H.J. Coherent oscillations: a mechanism of feature linking in the visual cortex? Biol. Cybernetics 60: 121–130, 1988.CrossRefGoogle Scholar
  3. [3]
    Kaczmarek, L.K. and Babloyantz, A. Spatiotemporal patterns in epileptic seizures. Biol Cybernetics 26: 199–208, 1977.CrossRefGoogle Scholar
  4. [4]
    Lopes da Silva, F.H., Hoeks, A., Smits, H. and Zetterberg, L.H. Model of brain rhythmic activity. The alpha rhythm of the thalamus. Kybernetik 15: 27–37, 1974.CrossRefGoogle Scholar
  5. [5]
    Destexhe, A. and Babloyantz, A. Pacemaker-induced coherence in cortical networks, submitted to Neural Computation, 1990Google Scholar
  6. [5]a
    see also Destexhe, A. and Babloyantz, A. in: Self-Organization, Emerging Properties and Learning, Ed. A. Babloyantz, Plenum press, in press, 1990.Google Scholar
  7. [6]
    Babloyantz, A., Nicolis, C. and Salazar, M., Evidence for chaotic dynamics of brain activity during the sleep cycle. Phys. Lett. A 111: 152–156, 1985.CrossRefGoogle Scholar
  8. [7]
    Babloyantz, A. and Destexhe, A. Is the Normal Heart a Periodic Oscillator? Biological Cybernetics 58 203, 1988.CrossRefGoogle Scholar
  9. [8]
    Babloyantz, A. and Destexhe, A., Strange attractors in the cerebral cortex, in: Temporal Disorder in Human Oscillatory Systems. Edited by Rensing, L., an der Heiden, U. and Mackey, M.C., Springer Series in Synergetics, 36. Berlin: Springer, 1987, pp. 48–56.CrossRefGoogle Scholar
  10. [9]
    Babloyantz, A. and Destexhe, A., Low dimensional chaos in an instance of epileptic seizure. Proc. Natl. Acad. Sc. USA 83: 3513–3517, 1986.CrossRefGoogle Scholar
  11. [10]
    Babloyantz, A. and Destexhe, A., The Creutzfeldt-Jakob disease in the hierarchy of chaotic attractors. in: From Chemical to Biological Organization. Edited by Markus, M., Muller, S. and Nicolis, G., Springer Series in Synergetics, 39. Berlin: Springer, 1988, pp. 307–316.CrossRefGoogle Scholar
  12. [11]
    Kaplan, J. and Yorke, J. Chaotic behavior of multi-dimensional difference equations, in: Functional Differential Equations and Approximations of Fixed Points, Eds. Peitgen, H.O. & Walther, H.O. (Springer, Berlin), Lectures Notes in Mathematics Vol. 330, 1979, pp. 228–236.CrossRefGoogle Scholar
  13. [12]
    Mori, H. Fractal dimensions of chaotic flows of autonomous dissipative systems. Prog. Theor. Phys. 63: 1044–1047, 1980.CrossRefGoogle Scholar
  14. [13]
    Eckmann, J.P., Kamphorst, S.O. and Ruelle, D. Recurrence plots of dynamical systems. Europhys. Lett. 4: 973–977, 1987.CrossRefGoogle Scholar
  15. [14]
    Eckmann, J.P. and Ruelle, D. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57: 617–656, 1985.CrossRefGoogle Scholar
  16. [15]
    Packard, N.H., Crutchfield, J.P., Farmer, J.D. and Shaw, R.S. Geometry from a time series. Phys. Rev. Lett. 45, 712 (1980) .CrossRefGoogle Scholar
  17. [16]
    Takens, F. Detecting strange attractors in turbulence, in: Dynamical Systems and Turbulence. Edited by Rand, D.A. and Young, L.S., Lecture Notes in Mathematics 898. Berlin: Springer, 1981, pp. 366–381.Google Scholar
  18. [17]
    Destexhe, A., Sepulchre, J.A. and Babloyantz, A. A comparative study of the experimental quantification of deterministic Chaos. Phys. Lett. A 132:101–106, 1988.CrossRefGoogle Scholar
  19. [18]
    Broomhead, D.S. and King, G.P. Exctracting qualitative dynamics from experimental data. Physica 20 D: 217, 1986.Google Scholar
  20. [19]
    Gallez, D., Destexhe, A. and Babloyantz, A. Static and dynamical properties of nonhomogeneous physiological attractors, to appear, 1990.Google Scholar
  21. [20]
    Grassberger, P. and Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 50: 346–349, 1983.CrossRefGoogle Scholar
  22. [21]
    Gallez, D. and Babloyantz, A. Predictability of human EEG: a dynamical approach. Biol. Cybernetics, in press, 1990.Google Scholar
  23. [22]
    Smith, L.A. Intrinsic limits on dimension calculations. Phys. Lett. A. 133: 283–288, 1988.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • A. Babloyantz
    • 1
  1. 1.CP 231 - Campus de la PlaineUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations