Advertisement

Saccharide Traffic Signals in Receptor-Mediated Endocytosis and Transport of Acid Hydrolases

  • William S. Sly
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 125)

Abstract

Endocytosis is a transport process which allows cells to interiorize extracellular material (1). Endocytic vesicles form when segments of the plasma membrane invaginate, pinch off, and enclose a volume of extracellular fluid. Fusion of plasma membrane to plasma membrane seals the neck of the vesicles (2) and the sites from which they invaginate. Fusion of the endocytic vesicle with another membrane permits the transport of the contents of the vesicle to another cellular compartment, or to the cell exterior.

Keywords

Alveolar Macrophage Lysosomal Enzyme Coated Vesicle Endocytic Vesicle Acid Hydrolase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. C. Silverstein, R. M. Steinman, and Z. A. Cohn, Endocytosis, Ann. Rev. Biochem. 46: 669–722 (1977)PubMedCrossRefGoogle Scholar
  2. 2.
    R. G. W. Anderson, M. S. Brown, and J. L. Goldstein, Role of the Coated Endocytic Vesicle in the Uptake of Receptor-bound Low Density Lipoprotein in Human Fibroblasts, Cell 10: 351364 (1977).Google Scholar
  3. 3.
    W. W. Franke, M. R. Luder, J. Kortenbeck, H. Zerban, and T. W. Keenen, Involvement of vesicle coat material in casein secretion and surface regeneration, J. Cell Biol. 69: 173–195 (1976).PubMedCrossRefGoogle Scholar
  4. 4.
    D. S. Friend, and M. G. Farquahr, Functions of coated vesicles during protein absorption in the rat vas deferens, J. Cell Biol. 35: 357–376 (1967).PubMedCrossRefGoogle Scholar
  5. 5.
    J. E. Heuser, and T. S. Reese, Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction, J. Cell Biol. 57: 315–344 (1973).PubMedCrossRefGoogle Scholar
  6. 6.
    S. C. Silverstein, J. Michl, and S. S. J. Sung, Phagocytosis, in: Transport of Macromolecules in Cellular Systems, S. C. Silverstein, ed., Dahlem Konferenzen, Berlin, pp. 245–264Google Scholar
  7. 7.
    P. J. Jacques, Endocytosis, in: Lysosomes in Biology and Pathway, J. T. Dingle and H. B. Fel, eds., North-Holland Publishing Co., Amsterdam, pp. 395–420 (1969).Google Scholar
  8. 8.
    R. M. Steinman, J. M. Silver, and Z. A. Cohn, Pinocytosis in fibroblasts: Quantitative studies in vitro, J. Cell Biol. 63: 665–687 (1974).CrossRefGoogle Scholar
  9. 9.
    G. E. Palade, M. Simionescu, and N. Simionescu, Transport of solutes across vascular endothelium, in: Transport of Macromolecules in Cellular Systems, S. C. Silverstein, ed., Dahlem Konferenzen, Berlin, pp. 145–166 (1978).Google Scholar
  10. 10.
    J. L. Goldstein, and M. S. Brown, The LDL pathway in human fibroblasts: a receptor mediated mechanism for the regulation of cholesterol metabolism, in: Current Topics in Cellular Regulation, 11, B. L. Horecher and E. R. Stadtman, eds., Academic Press, New York, pp. 147–181 (1976).Google Scholar
  11. 11.
    P. Youngdahl-Turner, L. E. Rosenberg, and R. H. Allen, Binding and uptake of transcobalmin II by human fibroblasts, J. Clin. Invest. 61: 133–141 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    J. P. Kraehenbuhl, and L. Kuhn, Transport of Immunoglobulins Across Epothelia, in: Transport of Macromolecules in Cellular Systems, S. C. Silverstein, ed., Dahlem Konferenzen, Berlin, pp. 213–228 (1978).Google Scholar
  13. 13.
    F. Van Leuven, J. J. Cassimon, and H. Van Den Berghe, Uptake and degradation of a2-Macroglobulin-protease complexes in human cells in culture, Expt. Cell Res. 117: 273–282 (1978).CrossRefGoogle Scholar
  14. 14.
    G. Carpenter, and S. Cohen, I–labeled human epidermal growth factor: Binding, internalization and degradation in human fibroblasts, J. Cell Biol. 71–159–171 (1976).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Ascoli, and D. Puett, Degradation of receptor-bound human choriogonadotropin by murine Leydig tumor cells, J.’ Biol. Chem. 253: 4892–4899 (1978).PubMedGoogle Scholar
  16. 16.
    F. R. Maxfield, J. Schlessinger, Y. Schecter, I. Pastan, and M. C. Willingham, Collection of insulin, EGF, and a2-Macroglobulin in the same patches on the surface of cultured fibroblasts and common internalization, Cell 14: 805–810 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    G. Ashwell, and A. G. Morell, The role —a—surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins, Adv. Enzym. 41: 99–128 (1974).Google Scholar
  18. 18.
    R. L. Burger, R. J. Schneider, C. S. Mehlman, and R. H. Allen, Human R-type vitamin B12 binding proteins. II. The role of transcobalamin I, transcobalamin III, and the normal granulocyte vitamin B12 binding protein in the plasma transport of vitamin B12, J. Biol. Chem. 250: 7703–7713 (1975).Google Scholar
  19. 19.
    F. S. Furbish, C. J. Steer, J. A. Barringer, E. A. Jones, and R. O. Brady, The uptake of native and desialylated glucocerebrosidase by rat hepatocyte and Kupffer cells, Biochem. Biophys. Res. Commun. 81: 1047–1053 (1978).PubMedCrossRefGoogle Scholar
  20. 20.
    R. O. Stockert, A. G. Morell, and I. H. Scheinberg, The existence of a second route for transfer of certain glycoproteins from the circulation into the liver, Biochem. Biophys. Res. Commun. 68: 988–993 (1976).PubMedCrossRefGoogle Scholar
  21. 21.
    J. Lunney, and G. Ashwell, A hepatic receptor of avian origin capable of binding specifically modified glycoproteins, Proc. Nat. Acad. Sci. USA 73: 341–343 (1976).PubMedCrossRefGoogle Scholar
  22. 22.
    T. L. Brown, L. A. Henderson, S. R. Thorpe, and J. W. Baynes, The effect of alpha-mannose-terminal oligosaccharides on the survival of glycoproteins in the circulation, Arch. Biochem. Bio hhyss. 188: 418–428 (1978).CrossRefGoogle Scholar
  23. 23.
    P. Stall,H H. Six, J. S. Rodman, P. Schlesinger, D. R. P. Tulsani, and O. Touster, Evidence for specific recognition sites mediating clearance of lysosomal enzymes in vivo, Proc. Nat. Acad. Sci. USA 73: 4045–4049 (1976).CrossRefGoogle Scholar
  24. 24.
    D. T. Achord, F. E. Brot, A. Gonzalez-Noriega, W. S, Sly, and P. Stahl, Human ß-glucuronidase II. Fate of infused human placental ß-glucuronidase in the rat, Pediat. Res. 11: 816–822 (1977).PubMedCrossRefGoogle Scholar
  25. 25.
    D. T. Achord, F. E. Brot, C. E. Bell, and W. S. Sly, Human g-glucuronidase: In vivo clearance and in vitro uptake by a glycoprotein recognition system on reticuloendothelial cells, Cell 15: 269–278 (1978).PubMedCrossRefGoogle Scholar
  26. 26.
    D. T. Achord, F. E. Brot, and W. S. Sly, Inhibition of the rat clearance systems for agalacto-orosomucoid by yeast mannans and by mannose, Biochem. Biophys. Res. Commun. 77: 409–415 (1977).PubMedCrossRefGoogle Scholar
  27. 27.
    P. D. Stahl, J. S. Rodman, M. J. Miller, and P. H. Schlesinger, Evidence for receptor-mediated binding of glycoproteins, glycoconjugates, and lysosomal glycosidases by alveolar macrophages, Proc. Nat. Acad. Sci. USA 75: 1399–1403 (1978).PubMedCrossRefGoogle Scholar
  28. 28.
    T. Kawasaki, Y. Mizuno, and I. Yamashima, Mannan binding proteins of rat tissues, Fed. Proc. 38: 468 Abst. (1979).Google Scholar
  29. 29.
    P. Stahl, and P. Schlesinger, Mannose/N-Acetylglucosamine receptor: Plasma clearance and macrophage uptake of glycoconjugates and lysosomal glycosidases. Fed. Proc. 38: 467 Abst. (1979).Google Scholar
  30. 30.
    C. J. Steer, F. S. Furbish, J. A. Barringer, R. O. Brady, and E. A. Jones, The uptake of agalacto-glucocerebrosidase by rat hepatocytes and Kupffer cells, FEBS Lett. 91: 202–205 (1978).PubMedCrossRefGoogle Scholar
  31. 31.
    E. F. Neufeld, T. W. Lim, and L. J. Shapiro, Inherited disorders of lysosomal metabolism, Ann. Rev. Biochem. 44: 357–376 (1975).PubMedCrossRefGoogle Scholar
  32. 32.
    E. F. Neufeld, G. N. Sando, A. J. Garvin, and L. H. Rome, The transport of glycosomal enzymes, J. Supramol. Struct 6: 95–101 (1977).PubMedCrossRefGoogle Scholar
  33. 33.
    S. Hickman, and E. F. Neufeld, A hypothesis for I-cell disease: defective hydrolases that do not enter lysosomes, Biochem. Biphys. Res. Commun. 49: 992–999 (1972)CrossRefGoogle Scholar
  34. 34.
    A. Kaplan, D. T. Achord, and W. S. Sly, Phosphohexosyl components of a lysosomal enzyme are recognized by pinocytosis receptors on human fibroblasts, Proc. Nat. Acad. Sci. 74: 2026–2030 (1977).PubMedCrossRefGoogle Scholar
  35. 35.
    A. Kaplan, D. Fischer, D. Achord, and W. S. Sly, Phosphohexosyl recognition is a general characteristic of pinocytosis of lysosomal glycosidases by human fibroblasts, J. Clin. Inv. 60: 1088–1093 (1977).CrossRefGoogle Scholar
  36. 36.
    G. N. Sando, and E. F. Neufeld, Recognition and receptor-mediated uptake of a lysosomal enzyme a-L-iduronidase, by cultured fibroblasts, Cell 12: 619–627 (1977).PubMedCrossRefGoogle Scholar
  37. 37.
    K. Ullrich, G. Mersmann, E. Weber, and K. von Figura, Evidence for lysosomal enzyme recognition by human fibroblasts via a phosphorylated carbohydrate moiety, Biochem. J. 170: 643–650 (1978).PubMedGoogle Scholar
  38. 38.
    S. Hickman, L. J. Shapiro, and E. F. Neufeld, A recognition marker required for uptake of a lysosomal enzyme by cultured fibroblasts, Biochem, Biophys. Res. Commun, 57: 55–61 (1974).CrossRefGoogle Scholar
  39. 39.
    V. Hieber, J. Distler, R. Myerowitz, R. D. Schmickel, and C. W. Jourdian, The role of glycosidically bound mannose in the assimilation of 6-galactosidase by ß-galactosidase deficient fibroblasts, Biochem. Biophys. Res. Commun. 73: 710–717 (1976).PubMedCrossRefGoogle Scholar
  40. 40.
    G. Sahagian, J. Distler, V. Hieber, R. Schmickel, and G. W. Jourdian, Role of mannose-6-phosphate in Sgalactosidase assimilation, Fed. Proc. 38: 467 Abst. (1979).Google Scholar
  41. 41.
    A. Kaplan, D. Fischer, and W. S. Sly, Correlation of structural features of phosphomannans with their ability to inhibit pinocytosis of human ß-glucuronidase by human fibroblasts, J. Biol. Chem. 253: 647–650 (1978).PubMedGoogle Scholar
  42. 42.
    H. D. Fischer, M. Natowicz, W. S. Sly, and R. K. Bretthauer, Fibroblast receptor for lysosomal enzyme mediates uptake of phosphomannans, Fed. Proc. 38: 467 Abst. (1979).Google Scholar
  43. 43.
    W. S. Sly, A. Gonzalez-Noriega, M. Natowicz, H. D. Fischer, and J. P. Chambers, Role of the phosphomannosyl recognition marker in the uptake and transport of lysosomal enzymes. Fed. Proc. 38: 467 Abst. (1979).Google Scholar
  44. 44.
    W. S. Sly, D. T. Achord, and A. Kaplan, Phosphohexose on lysosomal enzymes is the common recognition marker for pinocytosis receptor on fibroblasts, in: Protein Turnover and Lysosome Function, H. L. Segal and D. J, Doyle, eds., Academic Press, New York (1978).Google Scholar
  45. A. Hasilik, L. H. Rome, and E. F. Neufeld, Processing of lysosomal enzymes in human skin fibroblasts, Fed. Proc 38: 467 Abst. (1979).Google Scholar
  46. 46.
    W. S. Sly, and P. Stahl, Receptor mediated uptake of lysosomal enzymes, in: Transport of Macromolecules in Cellular Systems, S. C. Silverstein, ed., Dahlem Konferenzen, Berlin, pp. 229–244 (1978).Google Scholar
  47. 47.
    K. von Figura, and E. Weber, An alternative hypothesis of cellular transport of lysosomal enzymes in fibroblasts, Biochem. J. 176: 943–956 (1978).Google Scholar
  48. 48.
    J. B. Lloyd, Cellular transport of lysosomal enzymes-an alternate hypothesis, Biochem. J. 164: 281–282 (1977).PubMedGoogle Scholar
  49. 49.
    J. H. Glaser, K. J. Roozen, F. E. Brot, and W. S. Sly, Multiple isoelectric and recognition forms of human ß-glucuronidase activity, Arch. Biochem. Biophys. 166: 536–542 (1975).PubMedCrossRefGoogle Scholar
  50. 50.
    G. D. Vladutiu, and M. C. Rattazzi, Abnormal lysosomal hydro-lases excreted by cultured fibroblasts in I-cell disease (mucolipidosis II), Biochem. Biophys. Res. Commun. 67: 956–964 (1975).PubMedCrossRefGoogle Scholar
  51. 51.
    J. P. Prieels, S. V. Pizzo, L. R. Glasgow, J. C. Paulson, and R. L. Hill, Hepatic receptor that specifically binds oligosaccharides containing fucosyl cd+3 N-acetylglucosamine linkages, Proc. Nat. Acad. Sci. USA 75: 2215–2219 (1978).PubMedCrossRefGoogle Scholar
  52. 52.
    J. Kawasaki, R. Etoh, and I. Yamashima, Isolation and characterization of a mannan-binding protein from rabbit liver, Biochem. Biophys. Res. Commun. 81: 1018–1024 (1978).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • William S. Sly
    • 1
    • 2
  1. 1.The Edward Mallinckrodt Department of PediatricsWashington University School of MedicineUSA
  2. 2.Division of Medical GeneticsSt. Louis Children’s HospitalSt. LouisUSA

Personalised recommendations