Advertisement

Gangliosides, Neuraminidase and Sialyltransferase at the Nerve Endings

  • G. Tettamanti
  • A. Preti
  • B. Cestaro
  • B. Venerando
  • A. Lombardo
  • R. Ghidoni
  • S. Sonnino
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 125)

Abstract

Gangliosides are characteristic glycolipid components of the plasma membranes of mammalian cells. They are particularly abundant in the nervous tissue, specially the grey matter, where their concentration is about one tenth that of total phospholipids. The high content of gangliosides in the neuronal membranes, the great variety in the composition of their oligosaccharide chains, and their peculiar location in the outer membrane surface are enough evidence to stimulate research and speculation on the possible involvement of gangliosides in brain specific functions. As a matter of fact, gangliosides are just located- the synaptic junctions-where a specialized physiological event takes place, and definitely synaptic membranes would be and would behave differently without gangliosides. However, in order to provide a plausible working hypothesis for any specific roles of gangliosides in brain function, a more precise knowledge on the contribution given by gangliosides to the local environment of the membrane, in terms of capability and quality of interactions with both the lipid and protein components of the membrane itself, is required.

Keywords

Nerve Ending Neuronal Body Sialic Acid Content Synaptosomal Membrane Hypoosmotic Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Eichberg J. Jr, Whittaker V. P. and Dawson R. W. C. (1954) Biochem. J., 92, 91–100Google Scholar
  2. 2).
    Lowden J. A. and Wolfe L. S. (1964) Can. J. Biochem., 42, 1587–1594PubMedCrossRefGoogle Scholar
  3. 3).
    Wiegandt H. (1967) J. Neurochem., 14, 671–674PubMedCrossRefGoogle Scholar
  4. 4).
    Breckenridge W. C., Gombos G. and Morgan I. G. (1972) Biochim. Biophys. Acta, 266, 695–707PubMedCrossRefGoogle Scholar
  5. 5).
    Tettamanti G., Preti A., Lombardo A., Bonali F. and Zambotti V. (1973) Biochim. Biophys. Acta, 306, 466–477Google Scholar
  6. 6).
    Schengrund C. L. and Rosenberg A., (1970), J. Biol. Chem., 254, 6196–6200Google Scholar
  7. 7).
    Ohman R., Rosenberg A. and Svennerholm L. (1970), Biochemistry, 9, 3774–3782PubMedCrossRefGoogle Scholar
  8. 8).
    Tettamanti G., Morgan I. G., Gombos G., V i ncendon G. and Mandel P., (1972), Brain Research, 47, 515–518PubMedCrossRefGoogle Scholar
  9. 9).
    Hansson H. A., Holmgren J. and Svennerholm L. (1977)Proc. Natl. Acad. Sci. USA, 9, 3782–3786Google Scholar
  10. 10).
    Preti A., Lombardo A.,Fiorilli A.,Caimi L. and Tettamanti G. submitted for publication.Google Scholar
  11. 11).
    Mc Intosh C. H. S. and Plummer D. T. (1976) J. Neurochem., 27, 449–457CrossRefGoogle Scholar
  12. 12).
    Venerando B., Preti A., Lombardo A., Cestaro B. and Tettamanti G. (1978) Biochim. Biophys. Acta, 527, 17–30PubMedCrossRefGoogle Scholar
  13. 13).
    Ledeen R. W. (1978) J. Supram. Structure, 8, 1–17CrossRefGoogle Scholar
  14. 14).
    Sonnino S., Ghidoni R., Marchesini S. and Tettamanti G. (1979) J. Neurochem., 32, 312–316Google Scholar
  15. 15).
    Morgan I. G., Tettamanti G. and Gombos G. (1976) Adv. Expt I. Med. Biol., 71, 137–150Google Scholar
  16. 16).
    Forman D. S. and Ledeen R. W. (1972)Science, 177, 1630–1633Google Scholar
  17. 17).
    Rosenberg A. (1978) Adv.Exptl.Med.Biol., 101, 439–446Google Scholar
  18. 18).
    Sandhoff K., Pal Iman P., Wiegandt H. and Ziegler W. (1975) Adv. Expt I. Med. Biol., 101, 463–474Google Scholar
  19. 19).
    Shur B. D. and Roth S. (1975) Biochim. Biophys. Acta, 415, 473–512Google Scholar
  20. 20).
    Porter C. W. and Bernacki R. J. (1975) Nature, 256, 648–650PubMedCrossRefGoogle Scholar
  21. 21).
    Colombino L. F., Bosmann H. B. and Mc Lean R. J. (1978), Experimental Cell Research, 112, 25–30PubMedCrossRefGoogle Scholar
  22. 22).
    Svennerholm L. (1970) in “Comprehensive Biochemistry” (Florkin M. and Stotz E. H., eds), Elsevier Amsterdam, vol 18, pp 201–227Google Scholar
  23. 23).
    Gammack D. B. (1963) Biochem. J., 88, 373–383PubMedGoogle Scholar
  24. 24).
    Howard R. E. and Burton R. (1964) Biochim. Biophys. Acta, 84, 435–440Google Scholar
  25. 25).
    Yohe H. and Rosenberg A. (1972), Chem. Phys. Lipids, 9, 279–285PubMedCrossRefGoogle Scholar
  26. 26).
    Yohe H., Roark D.E. and Rosenberg A. (1976) J. Biol.Chem. 251, 7083–7089PubMedGoogle Scholar
  27. 27).
    Barenholz Y., Gibbs D., Sitman B. J., Gol I J., Thompson T. E. and Carlson F.D. (1977) Biochemistry, 16, 2806–2810PubMedCrossRefGoogle Scholar
  28. 28).
    Cestaro B., Ippolito R., Ghidoni R., Orlando P. and Tettamanti G. (1979), submitted for publication in the Bull.Mol. Biol.Med.Google Scholar
  29. 29).
    Cestaro B., Barenholz Y. and Gatt S. (1979) submitted for publication in the J. Biol.Chem.Google Scholar
  30. 30).
    Inoue K. and Kitagawa T. (1976) Biochim. Biophys. Acta, 426, 1–16CrossRefGoogle Scholar
  31. 31).
    Richards M. H. and Gardner C.R. (1978) Biochim. Biophys. Acta, 543, 508–522PubMedCrossRefGoogle Scholar
  32. 32).
    Sharom F. J. and Grant C. W. M. (1978) Biochim. Biophys. Acta 507, 280–293PubMedCrossRefGoogle Scholar
  33. 33).
    Warren L. (1959), J. Biol.Chem. 234, 1971–1974PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • G. Tettamanti
    • 1
  • A. Preti
    • 1
  • B. Cestaro
    • 1
  • B. Venerando
    • 1
  • A. Lombardo
    • 1
  • R. Ghidoni
    • 1
  • S. Sonnino
    • 1
  1. 1.Department of Biological Chemistry, Medical SchoolUniversity of MilanMilanItaly

Personalised recommendations