Advertisement

Gangliosides of Brain and of Extraneural Tissues: Structural Relationship to Protein-Linked Glycans

  • Heikki Rauvala
  • Jukka Finne
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 125)

Abstract

Several membrane-associated functions involve an interaction between a biologically active agent, such as antibody (Hakomori and Kobata, 1974; Talmadge and Burger, 1975), protein hormone (Fishman and Brady,1976) or toxin (Craig and Cuatrecasas, 1975), and a membrane carbohydrate chain. The carbohydrate chains of both membrane glycolipids and glycoproteins are in principle suited for such specific interactions, as they both contain a wide diversity of specific saccharide structures projecting to the external milieu from the cell.

Keywords

Sialic Acid Blood Group Erythrocyte Membrane Human Erythrocyte Carbohydrate Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ANDO S. and YU R.K. (1977): Isolation and characterization of a novel trisialoganglioside, G, from human brain. J. biol. Chem. 252, 6247–6250.TIaGoogle Scholar
  2. BAENZIGER J. and KORNFELD S. (1974): Structure of the carbohydrate units of IgAl immunoglobulin. II. Structure of the 0-glycosidically linked oligosaccharide units. J. biol. Chem. 242, 7270–7281.Google Scholar
  3. CARLSON D.M. (1968): Structures and immunochemical properties of oligosaccharides from pig submaxillary mucins. J. biol. Chem. 243, 616–626.PubMedGoogle Scholar
  4. CRAIG S.W. and CUATRECASAS P. (1975): Mobility of cholera toxin receptors on rat lymphocyte membranes. Proc. natn. Acad. Sci. U.S.A. 72, 3844–3848.CrossRefGoogle Scholar
  5. DEJTER-JUSZYNSKI M., HARPAZ N., FLOWERS H.M. and SHARON N. (1978): Blood-group ABH-specific macroglycolipids of human erythrocytes: isolation in a high yield from a crude membrane glycoprotein fraction. Eur. J. Biochem. 83, 363–373.Google Scholar
  6. FINNE J. (1975): Structure of the 0-glycosidically linked carbohydrate units of rat brain glycoproteins. Biochem. biophys. Acta 412, 317–325.Google Scholar
  7. FINNE J. and KRUSIUS T.(1976): 0-glycosidic carbohydrate units from glycoproteins of different tissues: demonstration of a brain-specific disaccharide, agalactosyl-(1–3)-N-acetylgalactosamine. FEBS Lett. 66,94–97. Google Scholar
  8. FINNE J, MONONEN I. and KARKKAINEN,J.,(1977a): Analysis of hexosaminitol-containing disaccharide alditols from rat brain glycoproteins and gangliosides as 0-trimethylsilyl derivatives by gas chromatography mass spectrometry. Biomed. Mass Spectrom. 4, 281–283.Google Scholar
  9. FINNE J.,KRUSIUS T, and RAUVALA H. (1977b): Occurrence of disialosyl groups in glycoproteins. Biochem. biophys. Res. Commun. 74, 405–410.Google Scholar
  10. FINNE J.,KRUSIUS T.,RAUVALA H. and HEMMINKI K. (1977c): The disialosyl group of glycoproteins. Occurrence in different tissues and cellular membranes. Eur. J. Biochem. 77, 319–323.CrossRefGoogle Scholar
  11. FINNE J.,KRUSIUS T,, RAUVALA H.,KEKOMAKI R. and MYLLYLA G. (1978): Alkali-stable blood group A- and B-active poly(glycosyl) peptides from human erythrocyte membrane. FEBS Lett. 89, 111–115.CrossRefGoogle Scholar
  12. FISHMAN P.H. and BRADY R.O. (1976): Biosynthesis and function of gangliosides. Science, N.Y. 194, 906–915.CrossRefGoogle Scholar
  13. GARDAS A. (1976): A structural study on a macro-glycolipid containing 22 sugars isolated from human erythrocytes. Eur. J. Biochem. 68, 177–183.PubMedCrossRefGoogle Scholar
  14. HAKOMORI S. (1976): Glycolipids of animal cell membranes, in “MTP International Review of Science”, Organic Chemistry, Series Two, Aspinall, G.O., Ed.,Vol. 7,pp. 223–249.Google Scholar
  15. HAKOMORI S. and KOBATA A. (1974): Blood group antigens, in “The Antigens”, Sela M.,Ed., Vol.2, Academic Press (New York), pp. 79–140.Google Scholar
  16. HAVERKAMP J., KAMERLING J.P., VLIEGENTHART J.F.G., VEH R.W. and SCHAUER R. (1977): Methylation analysis determination of acylneuraminic acid residue type 2-,qi glycosidic linkage, application to GTlb ganglioside and colominic acid. FEBS Lett. 73, 215–219.PubMedCrossRefGoogle Scholar
  17. INOUE S. and IWASAKI M. (1978): Isolation of a novel glycoprotein from the eggs of trout: occurrence of disialosyl groups on all carbohydrate chains. Biochem. biophys. Res. Commun. 83, 1018–1023.Google Scholar
  18. ISHIZUKA Land WIEGANDT H. (1972): An isomer of trisialoganglioside and the structure of tetra-and pentasialogangliosides from fish brain. Biochim. biophys. Acta 260, 279–289.Google Scholar
  19. IWAMORI M. and NAGAI Y. (1978a): GM3 ganglioside in various tissues of rabbit. Tissue-specific distribution of N-glycolylneuraminic acid-containing GM3. J. Biochem.,Tokyo 84, 1609–1615.Google Scholar
  20. IWAMORI M. and NAGAI Y.,(1978b): Isolation and characterization of GD3 ganglioside having a novel disialosyl residue from rabbit thymus. J. biol. Chem. 253,„8328–8331.Google Scholar
  21. JARNEFELT J.,FINNE J., KRUSIUS T, and RAUVALA H. (1978a): Protein-bound oligosaccharides of cell membranes. Trends Biochem. Sci. 3, 110–114.Google Scholar
  22. JARNEFELT J., RUSH J., LI Y.-T. and LAINE R.A. (1978b): Erythroglycan, a high molecular weight glycopeptideGoogle Scholar
  23. with the repeating structure (galactosyl-(1.4)-2-deoxy2-acetamido-glucosyl(1-a3)) comprising more than one-third of the protein-bound carbohydrate of human erythrocyte stroma. J. biol. Chem. 253, 8006–8009.Google Scholar
  24. KLENK E.,LIEDKE U., and GIELEN W. (1963): Das Gangliosid des Gehirns bei der infantilen amaurotischen Idiotie vom Typ Tay-Sachs. Hoppe-Seyler’s Z. physiol. Chem. 334, 186–192.Google Scholar
  25. KORNFELD R. and KORNFELD S. (1970): The structure of a phytohemagglutin receptor site from human erythrocytes. J. biol. Chem. 245, 2536–2545.Google Scholar
  26. KORNFELD R. (1978): Structure of the oligosaccharides of three glycopeptides from calf thymocyte plasma membranes. Biochemistry 17, 1415–1423.PubMedCrossRefGoogle Scholar
  27. KOSCIELAK J., MILLER-PODRAZA H., KRAUZE R. and PIASEK A. (1976): Isolation and characterization of poly(glycosyl) ceramides (megaglycolipids) with A, H and I blood-group activities. Eur. J. Biochem. 71, 9–18.Google Scholar
  28. KRUSIUS T. and FINNE J. (1977): Structural features of tissue glycoproteins. Fractionation and methylation analysis of glycopeptides derived from rat brain, kidney and liver. Eur. J. Biochem. 78, 369–379.PubMedCrossRefGoogle Scholar
  29. KRUSIUS T. and FINNE J. (1978): Characterization of a novel sugar sequence from rat-brain glycoproteins containing fucose and sialic acid. Eur. J. Biochem. 84, 395–403.PubMedCrossRefGoogle Scholar
  30. KRUSIUS T.,FINNE J. and RAUVALA H. (1976): The structural basis of different affinities of two types of acidic N-glycosidic glycopeptides for concanavalin A-Sepharose. FEBS Lett. 71, 117–120.CrossRefGoogle Scholar
  31. KRUSIUS T.,FINNE J. and RAUVALA H. (1978): The poly(glycosyl) chains of glycoproteins. Characterization of a novel type of glycoprotein saccharides from human erythrocyte membrane. Eur. J. Biochem. 92, 289–300.CrossRefGoogle Scholar
  32. KUHN R. and WIEGANDT H. (1963a): Die Konstitution der Ganglio-N-tetraose und des Gangliosids GI. Chem. Ber. 96, 866–880.CrossRefGoogle Scholar
  33. KUHN R. and WIEGANDT H. (1963b): Die Konstitution der Ganglioside GI1, GIII und Giv. Z. Naturforsch. 18b, 541–543.Google Scholar
  34. LI Y.-T., MANSSON J.-E., VANIER M.-T. and SVENNERHOLM L. (1973): Structure of the major glucosamine-containing ganglioside of human tissues. J. biol. Chem. 248, 2634–2636.Google Scholar
  35. MONTREUIL J. (1975): Recent data on the structure of the carbohydrate moiety of glycoproteins. Metabolic and biological implications. Pure appl. Chem. 42, 431–477Google Scholar
  36. NEWMAN W. and KABAT E.A. (1976): Immunochemical studies on blood groups. Structures and immunochemical properties of nine oligosaccharides from B-active and nonB-active blood group substances of horse gastric mucosae. Archs Biochem. Biophys. 172, 535–550.Google Scholar
  37. PURO K. (1969): Carbohydrate components of bovine-kidney gangliosides. Biochim. biophys. Acta 187, 401–413.Google Scholar
  38. PURO K.,MAURY P. and HUTTUNEN J.K. (1969): Qualitative and quantitative patterns of gangliosides in extra-neural tissues. Biochim. biophys. Acta 187, 230–235.Google Scholar
  39. RAUVALA H. (1976a): Isolation and partial characterization of human kidney gangliosides. Biochim. biophys. Acta 424, 284–295.Google Scholar
  40. RAUVALA H. (1976b): Gangliosides of human kidney. J. biol. Chem. 251, 7517–7520.PubMedGoogle Scholar
  41. RAUVALA H. and KÄRKKÄINEN J. (1977): Methylation analysis of neuraminic acids by gas chromatography-mass spectrometry. Carbohydr. Res. 56, 1–9.PubMedCrossRefGoogle Scholar
  42. RAUVALA H., KRUSIUS T. and FINNE J. (1978): Disialosyl paragloboside, a novel ganglioside isolated from human kidney. Biochim. biophys. Acta 531, 266–274.Google Scholar
  43. SIDDIQUI B. and HAKOMORI S. (1973): A ceramide tetrasaccharide of human erythrocyte membrane reacting with anti-type XIV pneumococcal polysaccharide antiserum. Biochim. biophys. Acta 330, 147–155.Google Scholar
  44. SLOMIAMY B.L., SLOMIANY A. and HERP A. (1978): Studies on the occurrence of disialosyl groups in glycoproteins of salivary glands. Eur. J. Biochem. 90, 255–260.Google Scholar
  45. SONNINO S., GHIDONI R., GALLI G. and TETTAMANTI G. (1978): On the structure of a new, fucose containing ganglioside from pig cerebellum. J. Neurochem. 31, 947–956.PubMedCrossRefGoogle Scholar
  46. SPIRO R.G. (1964): Periodate oxidation of the glycoprotein fetuin. J. biol. Chem. 239, 567–573.PubMedGoogle Scholar
  47. SPIRO R.G. and BHOYROO V.D. (1974): Structure of the 0-glycosidically linked carbohydrate units of fetuin. J. biol. Chem. 249, 5704–5717.PubMedGoogle Scholar
  48. STELLNER K. and HAKOMORI S. (1974): A ceramide pentasaccharide of human erythrocyte membrane. J. biol. Chem. 249, 1022–1025.PubMedGoogle Scholar
  49. SVENNERHOLM L. (1963): Chromatographic separation of human brain gangliosides. J. Neurochem. 10, 613–623.PubMedCrossRefGoogle Scholar
  50. SVENNERHOLM L, MÂNSSON J.-E. and LI Y.-T. (1973): Isolation and structural determination of a novel ganglioside, a disialosylpentahexosylceramide from human brain. J. biol. Chem. 248, 740–742.Google Scholar
  51. TALMADGE K.W. and BURGER M.M. (1975): Carbohydrates and cell-surface phenomena, in “MTP International Review of Science”, Biochemistry, Series One, Whelan W.J., Ed., Vol.5, Butterworths (London), pp.43–93.Google Scholar
  52. THOMAS D.B. and WINZLER R.J. (1969): Structural studies of human erythrocyte glycoproteins. Alkali-labile oligosaccharides. J. biol. Chem. 244, 5943–5946.PubMedGoogle Scholar
  53. THOMAS D.B., and WINZLER R.J. (1971): Structure of glycoproteins of human erythrocytes. Alkali-stable oligosaccharides. Biochem. J. 124, 55–59.PubMedGoogle Scholar
  54. VAITH P. and UHLENBRUCK G. (1978): The Thomsen agglutinat- ion phenomenon: a discovery revisited 50 years later.Z. Immun.-Forsch. 154, 1–14.Google Scholar
  55. WATANABE K., LAINE R.A. and HAKOMORI S. (1975): On neutral fucoglycolipids having long, branched carbohydrate chains: H-active and I-active glycosphingolipids of human erythrocyte membranes. Biochemistry 14, 2725–2733.Google Scholar
  56. WIEGANDT H. (1973): Gangliosides of extraneural organs. Hoppe-Seyler’s Z. physiol. Chem. 354, 1049–1056.Google Scholar
  57. WOLD J.K., SMESTAD B. and MIDTVEDT T. (1975): Intestinal glycoproteins of germfree rats.IV. Oligosaccharides obtained by chemical degradation of a water-soluble glycoprotein fraction. Acta chem. scand. B 29, 703–709.Google Scholar
  58. YAMAKAWA T. and SUZUKI S. (1951): The chemistry of the lipids of posthemolytic residue or stroma of erythrocytes. I. Concerning the ether-insoluble lipids of lyophilized horse blood stroma. J. Biochem.,Tokyo 38, 199–212.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Heikki Rauvala
    • 1
  • Jukka Finne
    • 1
  1. 1.Department of Medical ChemistryUniversity of HelsinkiHelsinki 17Finland

Personalised recommendations