Gangliosides of the CNS Myelin Membrane

  • R. W. Ledeen
  • F. B. Cochran
  • R. K. Yu
  • F. G. Samuels
  • J. E. Haley
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 125)


Myelin gangliosides have a number of unusual properties that set them apart from gangliosides of most other nervous system membranes. One is their low concentration, which in the case of rat amounts to about one-tenth that in synaptic plasma membranes. This may account for the fact that when first detected in isolated myelin1,2 they were believed to represent neuronal contamination. Subsequent studies of Suzuki and coworkers3,4,5 provided strong if not conclusive evidence that they are intrinsic to myelin itself. A key finding in those studies was the distinctive pattern of molecular distribution, the main feature of which was a high proportion of GM1. The same phenomenon was later observed in myelin from man6 and mouse7. We have undertaken a survey of several other vertebrates to assess possible variations in pattern and concentration.


Sialic Acid Optic Tract Species Comparison Synaptic Plasma Membrane Brain Ganglioside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. T. Norton and L. A. Autilio, The lipid composition of purified bovine brain myelin, J. Neurochem. 13: 213 (1966).PubMedCrossRefGoogle Scholar
  2. 2.
    E. F.Soto, L. S. de Bohner and M. D. C. Calvino, Chemical composition of myelin and other sub-cellular fractions isolated from bovine white matter, J. Neurochem. 13: 989 (1966).PubMedCrossRefGoogle Scholar
  3. 3.
    K. Suzuki, S. E. Poduslo and W. T. Norton, Gangliosides in the myelin fraction of developing rats, Biochim. Biophys. Acta 144: 375 (1967).CrossRefGoogle Scholar
  4. 4.
    K. Suzuki, J. F. Poduslo and S. E. Poduslo, Further evidence for a specific ganglioside fraction closely associated with myelin, Biochim. Biophys. Acta 152: 576 (1968).CrossRefGoogle Scholar
  5. 5.
    K. Suzuki, Formation and turnover of myelin ganglioside, J. Neurochem. 17: 209 (1970).PubMedCrossRefGoogle Scholar
  6. 6.
    R. W. Ledeen, R. K. Yu and L. F. Eng, Gangliosides of human myelin: sialosylgalactosylceramide (G7) as a major component, J. Neurochem. 21: 829 (1973).PubMedCrossRefGoogle Scholar
  7. 7.
    R. K. Yu and S. I. Yen, Gangliosides in developing mouse brain myelin, J. Neurochem. 25: 229 (1975).PubMedCrossRefGoogle Scholar
  8. 8.
    R. K. Yu and S. H. Lee, In vitro biosynthesis of sialosylgalactosylceramide (G7) by mouse brain microsomes, J. Biol. Chem. 251:198 (1976).Google Scholar
  9. 9.
    J. W. Fong, R. W. Ledeen, S. K. Kundu and S. W. Brostoff, Gangliosides of peripheral nerve myelin, J. Neurochem. 26: 157 (1976).PubMedGoogle Scholar
  10. 10.
    T. N. Seyfried, S. Ando and R. K. Yu, Isolation and characterization of human liver hematoside, J. Lipid Res 19: 538 (1978).PubMedGoogle Scholar
  11. 11.
    R. K. Yu and K. Iqbal, Sialosylgalactosyl ceramide as a specific marker for human myelin and oligodendroglial perikarya: gangliosides of human myelin, oligodendroglia and neurones, J. Neurochem. 32: 293 (1979).PubMedCrossRefGoogle Scholar
  12. 12.
    G. H. DeVries, W. T. Norton and C. S. Raine, Axons: Isolation from mammalian central nervous system, Science 172: 1370 (1972).CrossRefGoogle Scholar
  13. 13.
    G. H. DeVries, W. Payne and C. Zmachinski,Molecular composition of a rat CNS axolemma-enriched fraction, Trans. Am. Soc. Neurochem. 10: 159 (1979).Google Scholar
  14. 14.
    G. H. DeVries, Isolation of axolemma-enriched fractions from bovine central nervous system, Neurosci. Letts. 3: 117 (1976).Google Scholar
  15. 15.
    J. S. Elam, Dissociation of axonally transported proteins from myelin with EDTA, J. Neurochem. 31: 351 (1978).PubMedCrossRefGoogle Scholar
  16. 16.
    W. T. Norton and S. E. Poduslo, Myelination in rat brain: method of myelin isolation, J. Neurochem. 21: 749 (1973).PubMedCrossRefGoogle Scholar
  17. 17.
    R. K. Yu and R. W. Ledeen, Gas-liquid chromatographic assay of lipid-bound sialic acid: measurement of gangliosides in brain of several species, J. Lipid Res. 11: 506 (1970).PubMedGoogle Scholar
  18. 18.
    L. Svennerholm, Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method, Biochim. Biophys. Acta 24: 604 (1957).CrossRefGoogle Scholar
  19. 19.
    S. Ando, N,-C. Chang and R. K. Yu, High-performance thin-layer chromatography and densitometric determination of brain ganglioside compositions of several species, Analyt. Biochem. 89:437 (1978) .Google Scholar
  20. 20.
    L. Svennerholm, Chromatographic separation of human brain gangliosides, J. Neurochem. 10:613 (1963) .Google Scholar
  21. 21.
    N. F. Avrova, Brain ganglioside patterns of vertebrates, J. Neurochem. 18: 667 (1971).PubMedCrossRefGoogle Scholar
  22. 22.
    K. Ueno, S. Ando and R. K. Yu, Gangliosides of human, cat, and rabbit spinal cords and cord myelin, J. Liid Res. 19: 863 (1978).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • R. W. Ledeen
    • 1
  • F. B. Cochran
    • 1
  • R. K. Yu
    • 1
  • F. G. Samuels
    • 1
  • J. E. Haley
    • 1
  1. 1.Depts. of Neurology and Biochemistry, Albert Einstein Coll. of Med. and Dept. of NeurologyYale Univ.USA

Personalised recommendations