Characterization of Micellar and Liposomal Dispersions of Gangliosides and Phospholipids

  • Y. Barenholz
  • B. Ceastaro
  • D. Lichtenberg
  • E. Freire
  • T. E. Thompson
  • S. Gatt
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 125)


Gangliosides are minor surface components of most mammalian cells, where they are located mainly in the outer leaflet of the lipid bilayer of the plasma membrane (1,2, 3). They are also present in membranes of some enveloped viruses (4). In membranes they serve as receptors for various toxins, viruses, hormones and their pattern is often drastically changed in neoplasia (1, 3, 5). The gangliosides, which are part of the lipid bilayer of the membranes differ in their lyotropic behaviour from the phospholipids and cholesterol which constitute the main lipid components of the membrane (6,38). The membrane phospholipids have two long hydrophobic chains, an interface region and a relatively small inogenic head group. They are classified as “non-soluble swelling amphipaths (6), implying that they do not form micelles but disperse spontaneously in water, forming bilayered multilamellar large liposomes (MLV) or, upon ultrasonic irradiation small unilamellar vesicles (SUV). In contrast, the gangliosides are “soluble amphipaths” (6) which form micelles in water (7). The fact that, in spite of their two long hydrophobic chains the gangliosides are classified as “soluble” amphipaths is explained by their large and highly negatively charged polar head group. Since gangliosides and phospholipids differ in their state of aggregation, their coexistance in membranes may affect or even disturb the bilayered structure. This study aimed to investigate the mutual relations between gangliosides arrl the main lipid components of the membranes. For this purpose the structural and dynamic properties of dispersions composed of well-characterized membrane lipids (either synthetic or of natural sources) and well defined, pure gangliosides were studied with the aid of physical and enzymatic methods.


Lipid Bilayer Mixed Micelle Ultrasonic Irradiation Photon Correlation Spectroscopy Small Unilamellar Vesicle 



Critical micellar concentration


Photon correlation spectroscopy


1.6 diphenyl, 1.3.5. hexatriene


Differential scanning calorimetry

Egg PC

Egg phosphatidyl choline

Egg PE

Egg phosphatidyl ethanolamine


Dimyristoyl phosphatidylcholine


Dipalmitoyl phosphatidylcholine


Distearoyl phosphatidylcholine


N-acetyl neuraminic acid


Nuclear magnetic resonance


Multimaller large vesicles


Small, sonicated unilamellar vesicles


Trinitrobenzene sulfonic acid. The ganglioside numeclature suggested by Svennerholm was used throughout this paper


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Fishman, P.H., and Brady, R.O., (1976) Science 194, 906.PubMedCrossRefGoogle Scholar
  2. 2).
    Hansson, H.A., Holmgren, J. and Svennerholm, L., (1977) Proc. Natl. Acad. Sci. (US) 74, 3782.Google Scholar
  3. 3).
    Wallach, D.F., (1975) in Membrane Molecular Biol. of Neoplastic Cells, Elsevier Pub. N.Y.Google Scholar
  4. 4).
    Klenk, H.D. (1973) in Biological Membranes, Chapman, D. and S. Wallach, D.F.H., eds. Academic Press N.Y. P. 145.Google Scholar
  5. 5).
    Yamakawa, T., and Nagai, Y., (1978) Trends in Biochemical Sciences 3~ 128.Google Scholar
  6. 6).
    Small, D. M., (1970) Fed. Proc. 29, 1320.PubMedGoogle Scholar
  7. 7).
    Yohe, H. C., Roarck, D.E., Rosenberg, A., (1976) J. Biol. Chem. 251, 7083.PubMedGoogle Scholar
  8. 8).
    Cohen, R., Barenholz, Y., (1978) Biochem. Biophys. Acta 509, 181.CrossRefGoogle Scholar
  9. 9).
    Lentz, B.R., Barenholz, Y., Thompson, T.E., (1976) Biochemistry 15, 4521.PubMedCrossRefGoogle Scholar
  10. 10).
    Barenholz, Y., Gibbs, D., Litman, B.J., Goll, J., Thompson T.E., and Carolson, F.D., (1977) Biochemistry 16, 2806.PubMedCrossRefGoogle Scholar
  11. 11).
    Bartlett, G.R., (1959) J. Biol. Chem. 134, 466.Google Scholar
  12. 12).
    Barenholz, Y., Patzer, E.J., Moore, N. F. and Wagner, R.R. (1978) in the Enzymes of Lipid Metabolism, Gatt. S., Freysz, L., and Mandel, P., ed. Plenum N.Y. P. 45.Google Scholar
  13. 13).
    Svennerholm E. and Svennerholm, L., (1963) Biochim. Biophys. Acta 70 688.CrossRefGoogle Scholar
  14. 14).
    Warren, L., (1959) J. Biol. Chem. 234, 1971.Google Scholar
  15. 15).
    Yedgar, S., Hertz, R. and Gatt, S., (1974) Chem. Phys. Lipids 13, 404.PubMedCrossRefGoogle Scholar
  16. 16).
    Shinitzky, M., Dianoux, A. C., Gitler, C. and Webber, G., (1971) Biochemistry 10, 2106.PubMedCrossRefGoogle Scholar
  17. 17).
    Shinitzky, M. and Barenholz, Y., (1974) J. Biol. Chem, 249, 2652.PubMedGoogle Scholar
  18. 18).
    Hertz, R., and Barenholz, Y., (1977) J. Coll and Iner. Sci. (1977) 60, 188.CrossRefGoogle Scholar
  19. 19).
    Shinitzky, M., and Barenholz, Y., (1978) Biochim. Biophys. Acta 515, 367.CrossRefGoogle Scholar
  20. 20).
    Suurkuusk J., Lentz, B.R., Barenholz, Y., Biltonen, R.L., and Thompson T. E., (1976) Biochemistry 15, 1393.PubMedCrossRefGoogle Scholar
  21. 21).
    Gammack, D.B., (1963) Biochem. J. 88 373.PubMedGoogle Scholar
  22. 22).
    Howard, R.E., Burton, S., (1964) Biophys. Biochem. Acta 84, 435.Google Scholar
  23. 23).
    Yohe, H., Rosenberg, A., (1972) Chem Phys. Lipids 9 279.PubMedCrossRefGoogle Scholar
  24. 24).
    Cooper, V.G., Yedgar, S., and Barenholz, Y., (1974) Biochim. Biophys. Acta 363, 86.CrossRefGoogle Scholar
  25. 25).
    Lichtenberg, D., Yedgar, S., Cooper, V.G., and Gatt, S., (1979) Biochemistry In PressGoogle Scholar
  26. 26).
    Sharom, F.J. and Grant, C.W.H., (1978) Biochim. Biophys. Acta 507, 280.CrossRefGoogle Scholar
  27. 27).
    Harris, P. L., and Thronton, E.R., (1978) J. Amer. Chem. Soc. 100, 6737.Google Scholar
  28. 28).
    Mason, J.T. and Huang, C., (1978) Ann. N.Y. Acad. Sci. 308, 29.PubMedCrossRefGoogle Scholar
  29. 29).
    Bergelson, L.K., and Bursukov, L.I. (1977), Science, 197, 224.PubMedCrossRefGoogle Scholar
  30. 30).
    Israelachvili, J.N., Mitchell, D. J., and Ninham B. W., (1976) Chem. Soc. Faraday Trans. H 72, 1525.CrossRefGoogle Scholar
  31. 31).
    Winsor, A., (1968) Chemical Rev. 68, 1.CrossRefGoogle Scholar
  32. 32).
    Lakowitz, J.R., Prendergast, F.G., and Hogen, D., (1979) Biochemistry 18, 508.CrossRefGoogle Scholar
  33. 33).
    Barenholz, Y., Suurkuusk, J., Monncastle, D., Thompson, T. E., and Biltonen, R. L., (1976) Biochemistry 15, 244 1.Google Scholar
  34. 34).
    Jacobson, M. B., and Sturtevant, J. M., J. Biol. Chem. 252, 4749.Google Scholar
  35. 35).
    Op den Kamp, J.A.R., Kauerz, M. Th., and Van Deenen L. L. M., (1975) Biochim. Biophys. Acta 406, 169.CrossRefGoogle Scholar
  36. 36).
    Yedgar, S., Barenholz, Y., and Cooper V.G., (1974) Biochim. Biophys. Acta 363, 111.Google Scholar
  37. 37).
    Quinn, P.J., and Barenholz, Y., (1975) Biochem., J., 149, 199.Google Scholar
  38. 38).
    Curmatolo, W., Small, D. M., and Shipley, G.G., (1977) Biochim. Biophys. Acta 468, 11.CrossRefGoogle Scholar
  39. 39).
    Hill, M. W., and Lester, R., (1972) Biochim. Biophys. Acta 282, 18.CrossRefGoogle Scholar
  40. 40).
    O’brian, J.S., in the metabolic basis of inherited disease, Stanbury, J.B., Wyngaarden, J. B., and Fredrickson, D.S., McGraw Hill Book Corn. N.Y. P.841Google Scholar
  41. 41).
    MacDonald, R. C., Simon, S.A., and Bare, E., (1976) Biochemistry 15, 885.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Y. Barenholz
    • 1
    • 3
  • B. Ceastaro
    • 4
  • D. Lichtenberg
    • 2
  • E. Freire
    • 3
  • T. E. Thompson
    • 3
  • S. Gatt
    • 1
  1. 1.Dept. of BiochemistryThe Hebrew University-Hadassah Medical SchoolJerusalemIsrael
  2. 2.Dept. of pharmacologyThe Hebrew University-Hadassah Medical SchoolJerusalemIsrael
  3. 3.Dept. of BiochemistryUniversity of Virginia School of MedicineCharlottesvilleUSA
  4. 4.Institute of Biological ChemistryUniversity of Milano School of MedicineMilanoItaly

Personalised recommendations