Introductory Remarks on Chemical Structures of Gangliosides

  • Herbert Wiegandt
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 125)


Ever since their discovery by Ernst KLENK, the gangliosides among all glycosphingolipids have received particular attention. Interest in gangliosides was early stimulated by speculations on their possible involvement in specific functions of the brain, where they have been found most highly concentrated. In addition it was learned that gangliosides were stored in certain hereditary disorders affecting the central nervous system. Another finding that seemed to indicate a role of gangliosides in nerve conduction was their specific binding to tetanus toxin. It was in this way that W.E. VAN HEYNINGEN (1959) could explain the fixation of this toxin by brain tissue that much earlier, in 1898, had been described in WASSERMANN’s classical paper “Über eine neue Art Künstlicher Immunität”. Futhermore, many biological properties of sialic acid were recognized, for which gangliosides having this sugar acid as characteristic constituent of their carbohydrate residue, had to be considered as glycolipid carrier. But gangliosides also appeared to be the glycosphingolipids with the most complex chemical structures. Therefore they provided a challenge to the chemist in the determination of their molecular constitution.


Sialic Acid Sialic Acid Residue Tetanus Toxin Introductory Remark Carbohydrate Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. GHIDONI R., SONNINO S., TETTAMANTI G., WIEGANDT H. and ZAMBOTTI V. (1976): On the structure of two new gangliosides from beef brain. J. Neurochem. 27, 511–515.PubMedCrossRefGoogle Scholar
  2. ISHIZUKA I. and WIEGANDT H. (1972): An isomer of trisialoganglioside and the structure of tetra-and pentasialogangliosides from fish brain. Biochim. Biophys. Acta 260, 279–289.PubMedCrossRefGoogle Scholar
  3. KLENK E. and GIELEN W. (1963): Uber ein zweites hexosaminhaltiges Gangliosid aus Menschengehirn. Z. Physiol. Chem. 330, 218–226.CrossRefGoogle Scholar
  4. KLENK E., LIEDTKE U. and GIELEN W. (1963): Das Gangliosid des Gehirns bei der infantilen amaurotischen Idiotie vom Typ Tay-Sachs. Z. Physiol. Chem. 334, 186–192.CrossRefGoogle Scholar
  5. KUHN R. and WIEGANDT H. (1963a): Die Konstitution der Gangliotetraose und des Gangliosids GI. Chem. Ber. 96, 866–880.CrossRefGoogle Scholar
  6. KUHN R. and WIEGANDT H. (1963b): Die Konstitution der Ganglioside G11, G111 und CIV. Z. Naturforsch. 18b, 541–543.Google Scholar
  7. KUHN R. and WIEGANDT H. (1964a): Über ein glucosaminhaltiges Gangliosid. Z. Naturforsch. 19b, 80–81.Google Scholar
  8. KUHN R. and WIEGANDT H. (1964b): Weitere Ganglioside aus Menschenhirn. Z. Naturforsch. 19b, 256–257.Google Scholar
  9. LI Y.T., MANSSON J.E., VANIER M.T. and SVENNERHOLM L. (1973): Structure of the major glucosamine-containing ganglioside of human tissues. J. biol. Chem. 248, 2634–2636.PubMedGoogle Scholar
  10. SUGITA M. and HORI T. (1976): New types of gangliosides in starfish with sialic acid residues in the inner part of their carbohydrate chains. J. Biochem. 80, 637–640.PubMedGoogle Scholar
  11. SUZUKI A., ISHIZUKA I. and YAMAKAWA T. (1975): Isolation and charac- terisation of a ganglioside containing fucose from boar testis. J. Biochem. 78, 949–954.Google Scholar
  12. SVENNERHOLM L. (1962): The chemical structure of normal human brain and Tay-Sachs gangliosides. Biochem. Biophys. Res. Commun. 9, 436–441.PubMedCrossRefGoogle Scholar
  13. SVENNERHOLM L. (1963): Chromatographic separation of human brain gangliosides. J. Neurochem. 10, 613–623.PubMedCrossRefGoogle Scholar
  14. SVENNERHOLM L., MANSSON J.E. and LI Y.T. (1973): Isolation and structural determination of a novel ganglioside, a disialopentahexosylceramide from human brain. J. biol. Chem. 248, 740–742.PubMedGoogle Scholar
  15. VAN HEYNINGEN W.E. (1959): The fixation of tetanus toxin by nervous tissue. J. Gen. Microbiol. 20, 291–300.CrossRefGoogle Scholar
  16. Chemical assay of the tetanus toxin receptor in nervous tissue. J. Gen. Microbiol. 20, 301–309.Google Scholar
  17. Tentative identification of the tetanus toxin receptor in nervous tissue. J. Gen. Microbiol. 20, 310–320.Google Scholar
  18. WASSERMANN J. (1898): Über eine neue Art künstlicher Immunität. Berl. klin. Wschr. 35, 4–5.Google Scholar
  19. WATANABE K., STELLNER K., YOGEESWARAN G. and HAKOMORI S. (1974): A branched, long chain neutral glycolipid and gangliosides of human erythrocytes membranes. Fed. Proc. 33, 1225, Abstr. 3.Google Scholar
  20. WATANABE K., POWELL M. and HAKOMORI S.I. (1978): Isolation and characterization of a novel fucoganglioside of human erythrocyte membranes. J. biol. Chem. 253, 8962–8967.PubMedGoogle Scholar
  21. WIEGANDT H. (1973): Gangliosides of extraneural organs. Z. Physiol. Chem. 354, 1049–1056.CrossRefGoogle Scholar
  22. WIEGANDT H. (1974): Monosialo-lactoisohexaosyl-ceramide: a ganglioside from human spleen. Eur. J. Biochem. 45, 367–369.PubMedCrossRefGoogle Scholar
  23. WIEGANDT H. and SCHULZE B. (1969): Spleen gangliosides: the structure of ganglioside GLntet1. Z. Naturforsch. 24b, 945–946.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Herbert Wiegandt
    • 1
  1. 1.Department of BiochemistryUniversity MarburgGFR

Personalised recommendations