Modulation of the Release of Leukotrienes and Prostaglandins and of their Functional Effects in Human and Guinea-Pig Lung Parenchyma

  • G. C. Folco
  • L. Sautebin
  • G. Rossoni
  • T. Viganò
  • M. T. Crivellari
  • G. Galli
  • F. Berti
  • M. Messetti
Part of the NATO ASI Series book series (NSSA, volume 95)


The elucidation of the structure of SRS-A (slow reacting substance of anaphylaxis) has led to the discovery of Leukotrienes (LTs), a family of arachidonate metabolites produced by the enzyme 5-lipoxygenase (1) (2). A stereospecific synthesis brings about formation of two classes of LTs, one major class composed of the sulfidopeptide leukotrienes, LTC4, LTD4 and LTE4, and another class represented solely by LTB4. A variety of stimuli, cleaving arachidonate from membrane phospholipids, provide the necessary substrate for the synthesis of prostaglandins (PGs), thromboxanes (TX) and LTs (3). PGs and to a minor extent TX are formed ubiquitarily, whereas the synthesis of LTs seems to require a considerable cellular specificity (4) (5): all of them are formed by normal and asthmatic human lung where they may play a role as potent bronchoconstrictors as well as primary mediators of airway hyperreactivity (6).


High Pressure Liquid Chromatography Fresh Tissue Arachidonate Metabolite Lung Fragment Helical Strip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. C. Murphy, S. Hammarström and B. Samuelsson, Leucotriene C: a slow reacting substance from murine mastocytoma cells, Proc. Natl. Acad. Sci. U.S.A. 76: 4275 (1979).PubMedCrossRefGoogle Scholar
  2. 2.
    P. Borgeat and B. Samuelsson, Transformation of arachidonic acid by polymorphonuclear leukocytes, J. Biol. Chem. 254: 7865 (1379).Google Scholar
  3. 3.
    P. Borgeat, B. Fruteau de Laclos and J. Maclouf, New concepts in the modulation of leukotriene synthesis, Biochem. Pharmacol. 32: 381 (1983).Google Scholar
  4. 4.
    R. A. Lewis and K.F. Austen, The biologically active leukotrienes: biosynthesis, metabolism, receptors, functions and pharmacology, J. Clin. Invest. 73: 889 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    A. 0. S. Fels, N.A. Pawlowski, E.B. Cramer, T.K.C. King, Z.A. Cohn and W.A. Scott, Human alveolar macrophages produce leukotriene B4, Proc. Natl. Acad. Sci. U.S.A. 79: 7866 (1982).CrossRefGoogle Scholar
  6. 6.
    J. W. Weiss, J.M. Drazen, N. Coles, E.R. McFadden, P.F. Weller, E.J. Corey, R.A. Lewis and K.F. Austen, Bronchoconstrictor effects of leukotriene C in humans, Science 216: 196 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    G. C. Folco, G. Hansson and E. Granström, Leukotriene C4 stimulates TXA2 formation in isolated sensitized guinea-pig lungs, Biochem. Pharmacol. 30: 2491 (1981).Google Scholar
  8. 8.
    P. J. Piper and M.N. Samhoun, Stimulation of arachidonic acid metabolism and generation of thromboxane A2 by leukotrienes B4, C4 and D4 in guinea-pig lung in vitro, Br. J. Pharmacol. 77: 267 (1982).PubMedGoogle Scholar
  9. 9.
    Z. Marom, J.H. Shelhamer, M.K. Bach, D.R. Morton and M. Kaliner, Slow-reacting substances, leukotrienes C4 and D4, increase the release of mucus from human airways in vitro, Am. Rev. Respir. Dis. 126: 449 (1982)PubMedGoogle Scholar
  10. 10.
    S. J. Coles, K.H. Neill, L.M. Reid, K.F. Austen, Y. Nii, E.J. Corey and R.A. Lewis, Effects of LTC4 and D4 on glycoprotein and lysozime secretion by human bronchial mucosa, Prostaglandins 25: 155 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    N. Gilmore, J.R. Vane, J.H. Willie, Prostaglandins released by the spleen, Nature 218: 1135 (1968).PubMedCrossRefGoogle Scholar
  12. 12.
    S. H. Ferreira and F.S. Costa, A laminar flow technique with much increased sensitivity for the detection of smoothmuscle stimulating substances, Europ. J. Pharmac. 39: 379 (1976).Google Scholar
  13. L. Sautebin, D Caruso and G. Galli, Analysis of cyclo-oxyge-nase and lipoxygenase products in incubation media, Prostaglandins 27: 361 (1984)CrossRefGoogle Scholar
  14. 14.
    E Granström and H. Kindahl, Radioimmunoassay of prostaglandins and thromboxanes, in: “Advances in Prostaglandins and Thromboxane Research”, J.C. Frolich, ed., Raven Press, N.Y. (1978)Google Scholar
  15. J. Msclouf, E Corvazier and Z. Wang, Development of a radioimmunoassay for PGD2 using an antiserum against 9-methoxime PGD2 Submtted rto Analytical Biochemistry (1984)Google Scholar
  16. 16.
    L. Sautebin, R. Viganò, E. Grassi, M.T. Crivellari, G. Galli, F. Berti, M. Mezzetti and G.C. Folco, Release of leukotrienes induced by the Ca++-ionophore A23187, from human lung parenchyma in vitro, J. Pharmacol. Exp. Therap., submitted (1984).Google Scholar
  17. 17.
    B. B. Vargaftig, J. Lefort and R.C. Murphy, Inhibition by aspirin of bronchoconstriction due to leukotrienes C4 and D4 in the guinea-pig, Europ. J. Pharmac. 72: 4174 (1981).Google Scholar
  18. 18.
    F. Berti, G.C. Folco and C. Omini, An outline of the pharmacological control of the formation and release of thromboxane A2 and 12-HETE in the lung, in “Atherosclerosis Reviews: Prostaglandins and Cardiovascular Disease”, R.J. Hegyeli, ed., Raven Press, N.Y. (1981).Google Scholar
  19. 19.
    W. C. Hope, A.F. Welton, C.F. Nagy, C.B. Bernardo, J.W. Coffey, In vitro inhibition of the biosynthesis of SRS-A and lipoxygenase activity by quercetin, Biochem. Pharmacol. 32(2): 367 (1983).Google Scholar
  20. 20.
    R. J. Gryglewski, J. Robak and J. Swies, Flavonoids-lipoxygenase-Platelet aggregation. This volume.Google Scholar
  21. 21.
    K. Sekiya and H. Okuda, Selective inhibition of platelet lipoxygenase by baicalein, Biophys. Biochim. Res. Commun. 105: 1090 (1982).CrossRefGoogle Scholar
  22. 22.
    S. E. Dahlen, P. Hedqvist, S. Hammarström and B. Samuelsson, Leukotrienes are potent constrictors of human bronchi, Nature 288: 484 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    J. M. Hughes, J.P. Seale, D.M. Temple, Effect of fenoterol on immunological release of leukotrienes and histamine from human lung in vitro: selective antagonism by ß-adrenoceptor antagonists, Eur. J. Pharmacol. 95: 239 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    S. Bongrani, G.C. Folco, R. Razzetti and P. Schiantarelli, ß-adrenoceptor blockade is the basis of guinea-pig bronchial hyperresponsiveness to LTC4 and other agonists, Br. J. Pharmacol. 79: 839 (1983).PubMedGoogle Scholar
  25. 25.
    G. C. Folco, C. Omini, T. Viganò, G. Brunelli, G. Rossoni and F. Berti, Biological activity of LTC4 in guinea pigs: in vitro and in vivo studies, in: “Leukotrienes and other lipoxygenase productions”, B. Samuelsson and R. Paoletti, eds., Raven Press, N.Y. (1982).Google Scholar
  26. 26.
    S. O. Donnell, A selective ß-adrenoceptor stimulant (Th 1165 a) related to orciprenaline, Europ. J. Pharmac. 12: 34 (1970).Google Scholar
  27. 27.
    M. Hamberg, P. Hedqvist, K. Strandberg, J. Svensson and B. Samuelsson, Prostaglandin endoperoxides. IV Effects on smooth muscle, Life Sci. 16: 451 (1975).PubMedCrossRefGoogle Scholar
  28. 28.
    G. Rossoni, C. Omini, T. Viganò, V. Mandelli, G.C. Folco and F. Berti, Bronchoconstriction by histamine and bradykinin in guinea-pig: relationship to thromboxane A2 generation and effect of aspirin, Prostaglandins 20: 547 (1980)PubMedCrossRefGoogle Scholar
  29. 29.
    J. M. Drazen and K.F. Austen, Effect of intravenous administration of SRS-A, histamine, bradykinin and PGF2 on pulmonary mechanichs in the guinea-pigs, J. Clin. Invest. 53: 1679 (1974).PubMedCrossRefGoogle Scholar
  30. 30.
    S. Yoshizaki, K. Tanimura, S. Tamada, Y. Yabuuchi and K. Nakagawa, Sympathomimetic amines having a carbostyryl nucleus, J. Med. Chem. 19: 1138 (1976).PubMedCrossRefGoogle Scholar
  31. 31.
    Y. Yabuuchi, S. Yamashita and S. Tei, Pharmacological studies of OPC-2009 a newly synthetized selective ß-adrenoceptor stimulant, J. Pharmacol. Exp. Therap. 202: 326 (1977).Google Scholar
  32. 32.
    J. M. Drazen, M.W. Schneider and C.S. Venugopalan, Bronchodilator activity of dimaprit in the guinea-pig in vitro and in vivo, Europ. J. Pharmacol. 55: 233 (1979).Google Scholar
  33. 33.
    G. E. Davies and T.P. Johnston, Quantitative study on anaphylaxis in guinea-pig passively sensitized with homologous antibody, Int. Arch. Allergy 41: 648 (1971).PubMedCrossRefGoogle Scholar
  34. 34.
    R. T. Brittain, C.M. Dean and D. Jack, Sympathomimetic bronchodilator drugs, in: “Respiratory Pharmacology”, J.G. Widdicombe, ed., Pergamon Press, Oxford (1981).Google Scholar
  35. 35.
    E. G. Lapetina, C.J. Schmitges, K. Chandrabose and P. Cuatrecasas, Regulation of phospholipase activity in platelets, in: “Advances in Prostaglandin and Thromboxane Res., Vol. 3”, C. Galli, G. Galli and G. Porcellati, eds., Raven Press, N.Y. (1978).Google Scholar
  36. 36.
    Y. Saitoh, T. Hosokawa, T. Igawa and Y. Irie, Effect of a selective ß2-adrenoceptor agonist, procaterol, on tissue cyclic AMP level, Biochem. Pharmacol., 28: 1319 (1979).Google Scholar
  37. 37.
    G. C. Folco, E. Passoni, T. Viganò, L. Daffonchio, G. Rossoni, G. Brunelli and F. Berti, New pharmacological aspects of the bronchodilating activity of procaterol, Pharm. Res. Commun. 15: 909 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • G. C. Folco
    • 1
  • L. Sautebin
    • 1
  • G. Rossoni
    • 1
  • T. Viganò
    • 1
  • M. T. Crivellari
    • 1
  • G. Galli
    • 1
  • F. Berti
    • 1
  • M. Messetti
    • 2
  1. 1.Institute of Pharmacology and PharmacognosyUniversity of MilanMilanoItaly
  2. 2.IV Clinic of Thoracic surgeryPoliclinico di Milano Via F. SforzaMilanoItaly

Personalised recommendations