Pharmacologic Modulation of Leukotriene Biosynthesis by Incorporation of Alternative Unsaturated Fatty Acids (20:5 and 22:6)

  • Robert A. Lewis
  • Tak H. Lee
  • K. Frank Austen
Part of the NATO ASI Series book series (NSSA, volume 95)


The 5-lipoxygenase pathway for oxidative metabolism of unsaturated fatty acids was first recognized less than 10 years ago with the definition of 5S-hydroxy-eicosatetraenoic acid (5-HETE) as a product, l and its potential biological relevance to inflammation was defined solely by the modest chemotactic activity of 5-HETE.2 However, major interest in this pathway did not occur until 5 years ago when leukotriene B4 (LTB4), 5S,12R-dihydroxy-6,14-cis-8,10-trans-eicosatetraenoic acid was first described3 and the elusive “slow reacting substance of anaphylaxis (SRS-A),” was chemically defined as three additional leukotriene products of this pathway: LTC4, 5S-hydroxy-6R-S-glutathionyl-7,9-trans-11,14-cis-eicosatetraenoic acido; LTD4, 5S-hydroxy-6R-S-cysteinylglycyl-7,9-trans-11,14-cis-eicosatetraenoic acid5-7; and LTE4, 5S-hydroxy-6R-S-cysteinyl-7,9-trans-11,14-cis-eicosatetraenoic acid.8 That efforts to decrease the generation of the leukotriene compounds could have a significant effect in down-regulating a variety of inflammatory events has been strongly suggested by several types of data developed over the past 5 years, with regard to the breadth of proinflammatory effects manifested by these compounds, indications that a variety are mediated via specific receptors that do not recognize other naturally-occurring compounds, an expanding knowledge of the inflammatory cell types which serve as sources for the leukotrienes, and the demonstration that leukotrienes are recoverable from complex biological fluids in both in vivo models of inflammation and human disease. Although there is potential for antagonizing the biological effects of each leukotriene at the end-organ receptor level, the present discussion will focus mainly on regulation of leukotriene biosynthesis as an anti-inflammatory therapeutic approach. Furthermore, the potential of dietary alteration as an adjunct to developing pharmacotherapeutic inhibitors of the 5-lipoxygenase pathway will be specifically considered.


Arachidonic Acid Epoxide Hydrolase Enoic Acid Mastocytoma Cell Human Pulmonary Mast Cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Borgeat, M. Hamberg, and B. Samuelsson, Transformation of arachidonic acid and homo-gamma-linolenic acid by rabbit polymorphonuclear leukocytes. Monohydroxy acids from novel lipoxygenases, J. Biol. Chem. 251:7816 (1976), and correction: 252: 8772 (1977).Google Scholar
  2. 2.
    E.J. Goetzl, A role for endogenous mono-hydroxy-eicosatetraenoic acids (HETEs) in the regulation of human neutrophil migration, Immunology. 40: 709 (1980).PubMedGoogle Scholar
  3. 3.
    P. Borgeat and B. Samuelsson, Arachidonic acid metabolism in polymorphonuclear leukocytes: effects of ionophore A23187, Proc. Natl. Acad. Sci. USA. 76: 2148 (1979).PubMedCrossRefGoogle Scholar
  4. 4.
    R.C. Murphy, S. Hammarstr’óm, and B. Samuelsson, Leukotriene C: a slow reacting substance from purine mastocytoma cells, Proc. Natl. Acad. Sci. USA. 76: 4275 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    R.A. Lewis, K.F. Austen, J.M. Drazen, D.A. Clark, A. Marfat, and E.J. Corey, Slow reacting substances of anaphylaxis: identification of leukotriene C-1 and D from human and rat sources, Proc. Natl. Acad. Sci. USA. 77: 3710 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    L. Örning, S. Hammarstr’óm, and B. Samuelsson, Leukotriene D: a slow reacting substance from rat basophilic leukemia cells, Proc. Natl. Acad. Sci. USA. 77: 2014 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    H.R. Morris, G.W. Taylor, P.J. Piper, and J.R. Tippins, Structure of slow reacting substance of anaphylaxis from guinea pig lung, Nature. 285: 104 (1980).PubMedCrossRefGoogle Scholar
  8. 8.
    R.A. Lewis, J.M. Drazen, K.F. Austen, D.A. Clark, and E.J. Corey, Identification of the C(6)-S-conjugate of leukotriene A with cysteine as a naturally occurring slow reacting substance of anaphylaxis (SRS-A). Importance of the 11-cis geometry for biological activity, Biochem. Biophys. Res. Commun. 96: 271 (1980).CrossRefGoogle Scholar
  9. 9.
    W.E. Brocklehurst, The release of histamine and formation of a slow reacting substance of anaphylaxis (SRS-A) during anaphylactic shock, J. Physiol. 151: 416 (1960).PubMedGoogle Scholar
  10. 10.
    J.M. Drazen, R.A. Lewis, S.I. Wasserman, R.P. Orange, and K.F. Austen, Differential effects of a partially purified preparation of slow reacting substance of anaphylaxis on guinea pig tracheal spirals and parenchymal strips, J. Clin. Invest. 63: 1 (1979).PubMedCrossRefGoogle Scholar
  11. 11.
    J.M. Drazen, K.F. Austen, R.A. Lewis, D.A. Clark, G. Goto, A. Marfat, and E.J. Corey, Comparative airway and vascular activities of leukotrienes C-1 and D in vivo and in vitro, Proc. Natl. Acad. Sci. USA. 77: 4354 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    J.M. Drazen C.S. Venugopalan, K.F. Austen, F. Brion, and E.J. Corey, Effects of leukotriene E on pulmonary mechanics in the guinea pig, Am. Rev. Respir. Dis. 125: 290 (1982).PubMedGoogle Scholar
  13. 13.
    A.G. Leitch, E.J. Corey, K.F. Austen, and J.M. Drazen, Indomethacin potentiates the pulmonary response to aerosol leukotriene C4 in the guinea pig, Amer. Rev. Respir. Dis. 128: 639 (1983).Google Scholar
  14. 14.
    G. Smedeg-rd, P. Hedqvist, S.-E. Dahlén, B. Revenus, S. Hammarstr’m, and B. Samuelsson, Leukotriene C4 affects pulmonary and cardiovascular dynamics in monkey, Nature. 295: 327 (1982).CrossRefGoogle Scholar
  15. 15.
    J.M. Drazen and K.F. Austen, Effects of intravenous administration of slow reacting substance of anaphylaxis, histamine, bradykinin, and prostaglandin F2a on pulmonary mechanics in the guinea pig, J. Clin. Invest. 53: 1679 (1974).PubMedCrossRefGoogle Scholar
  16. 16.
    J.M. Drazen, R.A. Lewis, K.F. Austen, and E.J. Corey, Pulmonary pharmacology of the SRS-A leukotrienes, in: “Leukotrienes and Prostacyclin,” F. Berti, G. Folco, and G Velo, eds., Plenum Press, New York (1983).Google Scholar
  17. 17.
    M.C. Holroyde, R.E.C. Altounyan, M. Cole, M. Dixon, and E.V. Elliot, Bronchoconstriction produced in man by leukotriene C and D, Lancet. 2: 17 (1981).PubMedCrossRefGoogle Scholar
  18. 18.
    J.W. Weiss, J.M. Drazen, N. Coles, E.R. McFadden, Jr., P.F. Weller, E.J. Corey, R.A. Lewis, and K.F. Austen, Bronchoconstrictor effects of leukotriene C in humans, Science. 216: 196 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    J.W. Weiss, J.M. Drazen, E.R. McFadden, Jr., P.F. Weller, E.J. Corey, R.A. Lewis, and K.F. Austen, Airway constriction in normal humans produced by inhalation of leukotriene D. Potency, time course, and effect of aspirin therapy, J. Amer. Med Assoc. 249: 2814 (1983).CrossRefGoogle Scholar
  20. 20.
    Z. Marom, J.H. Shelhamer, M.K. Bach, D.R. Morton, and M. Kaliner, Slow-reacting substances, leukotrienes C4 and D4, increase the release of mucus from human airways in vitro, Am. Rev. Respir. Dis. 126: 449 (1982).PubMedGoogle Scholar
  21. 21.
    S.J. Coles, K.H. Neill, L.M. Reid, K.F. Austen, Y. Nii, E.J. Corey, and R.A. Lewis, Effects of leukotrienes C4 and D4 on glycoprotein and lysozyme secretion by human bronchial mucosa, Prostaglandins. 25: 155 (1983).PubMedCrossRefGoogle Scholar
  22. 22.
    S.-E. Dahlén, J. Bjork, P. Hedqvist, K.-E. Arfors, S. Hammarström, J.-A. Lindgren, and B. S.muelsson, Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: in vivo effects with relevance to the acute inflammatory response, Proc. Natl. Acad. Sci. USA. 78: 3887 (1981).Google Scholar
  23. 23.
    N.A. Soter, R.A. Lewis, E.J. Corey, and K.F. Austen, Local effects of synthetic leukotrienes (LTC4, LTD4, LTE4, and LTB4) in human skin, J. Invest. Derm. 80: 115 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    F. Michelassi, L. Landa, R.D. Hill, E. Lowenstein, W.D. Watkins, A.J. Petkau, and W.M. Zapol, Leukotriene D4: a potent coronary artery vasoconstrictor associated with impaired ventricular contraction, Science. 217: 841 (1982).PubMedCrossRefGoogle Scholar
  25. 25.
    M.A. Pfeffer, J.M. Pfeffer, R.A. Lewis, E. Braunwald, E.J. Corey, and K.F. Austen, Systemic hemodynamic effects of leukotrienes C4 and D4 in the rat, Am. J. Physiol. 244: H628 (1983).PubMedGoogle Scholar
  26. 26.
    J. Bittl, M.A. Pfeffer, R.A. Lewis, J.M. Pfeffer, J.S. Ingwall,and K.F. Austen, Mechanism of the negative ionotropic action of leukotrienes C4 and D4 on the isolated rat heart, J. Amer. College Cardiol. 3: 503 (1984).Google Scholar
  27. 27.
    K.F. Badr, C. Baylis, J.M. Pfeffer, M.A. Pfeffer, R.J. Soberman, R.A. Lewis, K.F. Austen, E.J. Corey, and B.M. Brenner, Renal and systemic hemodynamic responses to intravenous infusion of leukotriene C4 in the rat, Circ. Res. 54: 492 (1984).Google Scholar
  28. 28.
    P. Sirois, S. Roy, and P. Borgeat, The lung parenchymal strip as a sensitive assay for leukotriene 84, Prostaglandins Med. 6: 153 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    E.J. Goetzl and W.C. Pickett, The human polymorphonuclear leukocyte chemotactic activity of complex hydroxy-eicosatetraenoic acids (HETEs), J. Immunol. 125: 1789 (1980).PubMedGoogle Scholar
  30. 30.
    R.A. Lewis, J.M. Drazen, E.J. Corey, and K.F. Austen, Structural and functional characteristics of the leukotriene components of slow reacting substance of anaphylaxis (SRS-A), in: “SRS-A and the Leukotrienes,” P.J. Piper, ed., John Wiley and Sons, London (1981).Google Scholar
  31. 31.
    R.L. Hoover, M.L. Karnovsky, K.F. Austen, E.J. Corey, and R.A. Lewis, Leukotriene B4 action on endothelium mediates augmented neutrophil/endothelial adhesion, Proc. Natl. Acad. Sci. USA. 81: 2191 (1984).PubMedCrossRefGoogle Scholar
  32. 32.
    D. Atluru and J.S. Goodwin, Control of polyclonal immunoglobulin production from human lymphocytes by leukotrienes; LTB4 induces an OKT8(+), radiosensitive suppressor cell from resting human OKT8(-) T cells, J. Clin. Invest. (in press).Google Scholar
  33. 33.
    D.G. Payan and E.J. Goetzl, Specific suppression of human T lymphocyte function by leukotriene 84, J. Immunol. 131: 551 (1983).PubMedGoogle Scholar
  34. 34.
    M.P. Rola-Plezczynski, P. Borgeat, and P. Sirois, Leukotriene B4 induces human suppressor lymphocytes, Biochem. Biophys. Res. Commun. 198: 1531 (1982).CrossRefGoogle Scholar
  35. 35.
    R.A. Lewis, J.M. brazen, K.F. Austen, M. Toda, F. Brion, A. Marfat, and E.J. Corey, Contractile activities of structural analogs of leukotrienes C and D: role of the polar substituents, Proc. Natl. Acad. Sci. USA. 78: 4579 (1981).PubMedCrossRefGoogle Scholar
  36. 36.
    S. Krilis, R.A. Lewis, E.J. Corey, and K.F. Austen, Specific binding of leukotriene C4 on a smooth muscle cell line, J. Clin. Invest. 72: 1516 (1983).PubMedCrossRefGoogle Scholar
  37. 37.
    S. Krilis, R.A. Lewis, E.J. Corey, and K.F. Austen, Specific binding of leukotriene C4 to ileal segments and subcellular fractions of ileal smooth muscle, Proc. Natl. Acad. Sci. USA. 81: 4529 (1984).PubMedCrossRefGoogle Scholar
  38. 38.
    S.S. Pong, R.N. DeHaven, F.A. Kuehl, Jr., R.W. Egan, Leukotriene C4 binding to rat lung membranes, J. Biol. Chem. 258: 9616 (1983).PubMedGoogle Scholar
  39. 39.
    G.K. Hogaboom, S. Mong, H.-L. Wu, and S. Crooke, Peptidoleukotrienes: distinct receptors for leukotrienes C4 and D4 in the guinea pig lung, Biochem. Biophys. Res. Commun. 116: 1136 (1983).CrossRefGoogle Scholar
  40. 40.
    R.F. Bruns, W.J. Thomsen, and T.A. Pugsley, Binding of leukotrienes C4 and D4 to membranes from guinea pig lung: regulation by ions and guanine nucleotides, Life Sci. 33: 645 (1983).PubMedCrossRefGoogle Scholar
  41. 41.
    S.S. Pong and R.N. DeHaven, Characterization of a leukotriene D4 receptor in guinea pig lung, Proc. Natl. Acad. Sci. USA. 80: 7415 (1983).PubMedCrossRefGoogle Scholar
  42. 42.
    S. Krilis, R.A. Lewis, and K.F. Austen, Classes of receptors for the sulfidopeptide leukotrienes, in: “Icosanoids and Ion Transport,” P. Braquet and B. Samuelsson, eds., Raven Press, New York (in press)Google Scholar
  43. 43.
    B.J. Ballermann, R.A. Lewis, E.J. Corey, K.F. Austen, and B.M. Brenner, Identification of leukotriene C4 (LTC4) receptors in isolated rat renal glomeruli, Clin. Res. 32: 440A (1984).Google Scholar
  44. 44.
    E.J. Goetzl and W.C. Pickett, Novel structural determinants of the human neutrophil chemotactic activity of leukotriene B, J. Exp. Med. 153: 482 (1981).PubMedCrossRefGoogle Scholar
  45. 45.
    R.A. Lewis, E.J. Goetzl, J.M. Drazen, N.A. Soter, K.F. Austen, and E.J. Corey, Functional characterization of synthetic leukotriene B and its stereochemical isomers, J. Exp. Med. 154: 1243 (1981).PubMedCrossRefGoogle Scholar
  46. 46.
    A.W. Ford-Hutchinson, M.A. Bray, F.M. Cunningham, E.M. Davidson, and M.J.H. Smith, Isomers of LTB4 posess different biological potencies, Prostaglandins 21: 143 (1981).PubMedCrossRefGoogle Scholar
  47. 47.
    D.W. Goldman and E.J. Goetzl, Specific binding of leukotriene B4 to receptors on human polymorphonuclear leukocytes, J. Immunol. 129: 1600 (1982).PubMedGoogle Scholar
  48. 48.
    D.W. Goldman and E.J. Goetzl, Selective transduction of human polymorphonuclear leukocyte functions by subsets of receptors for leukotriene B4, J. Allergy Clin. Immunol. (in press).Google Scholar
  49. 49.
    P.F. Weller, C.W. Lee, D.W. Foster, E.J. Corey, K.F. Austen, and R.A. Lewis, Generation and metabolism of 5-lipoxygenase pathway leukotrienes by human eosinophils: predominant production of leukotriene C4, Proc. Natl. Acad. Sci. USA. 80: 7626 (1983).PubMedCrossRefGoogle Scholar
  50. 50.
    C.W. Lee, R.A. Lewis, A.I. Tauber, M. Mehrotra, E.J. Corey, and K.F. Austen, The myeloperoxidase-dependent metabolism of leukotrienes C4, D4, and E4 to 6-trans-leukotriene B4 diastereoisomers and the subclass-specific S-diastereoisomeric sulfoxides, J. Biol. Chem. 258: 15004 (1983).PubMedGoogle Scholar
  51. 51.
    A.O. Fels, N.A. Pawlowski, E.B. Cramer, T.K.C. King, Z.A. Cohn, and W.A. Scott, Human alveolar macrophages produce leukotriene B4, Proc. Natl. Acad. Sci. USA. 79: 7866 (1982).PubMedCrossRefGoogle Scholar
  52. 52.
    T.R. Martin, L.C. Altman, R.K. Albert, and W.R. Henderson, Leukotriene B4 production by the human alveolar macrophage: a potential mechanism for amplifying inflammation in the lung, Amer. Rev. Respir. Dis. 125: 106 (1984).Google Scholar
  53. 53.
    P. Godard, M. Damon, F.B. Michel, E.J. Corey, K.F. Austen, and R.A. Lewis, Leukotriene B4 production from human alveolar macrophages, Clin. Res. 31: 548A (1983).Google Scholar
  54. 54.
    J.D. Williams, J.K Czop, and K.F. Austen, Release of leukotrienes by human monocytes on stimultion of their phagocytic receptor for particulate activators, J. Immunol. 132: 3034 (1984).PubMedGoogle Scholar
  55. 55.
    D.W. MacGlashan, R. Schleimer, S.P. Peters, E.S. Schulman, G.K. Adams, H.H. Newball, and L.M. Lichtenstein, Generation of leukotrienes by purified human lung mast cells, J. Clin. Invest. 70: 747 (1982).PubMedCrossRefGoogle Scholar
  56. 56.
    S.P. Peters, D.W. MacGlashan, E.S. Schulman, R.P. Schleimer, E.C. Hayes, J. Rokach, N.F. Adkinson and L.M. Lichtenstein, Arachidonic acid metabolism in purified human lung mast cells, J. Immunol. 132: 1972 (1984).PubMedGoogle Scholar
  57. 57.
    T. Shimizu, O. RRdmark, and B. Samuelsson, Enzyme with dual lipoxygenase activities catalyzes leukotriene A4 synthesis from arachidonic acid, Proc. Natl. Acad. Sci. USA. 81: 689 (1984).PubMedCrossRefGoogle Scholar
  58. 58.
    Rddmark, C. Malmsten, B. Sanuelssson, G. Goto, A. Marfat, and E.J. Corey, Leukotriene A: isolation from human polymorphonuclear leukocytes, J. Biol. Chem. 255: 11828 (1980).Google Scholar
  59. 59.
    A.L. Maycock, M.S. Anderson, D.M. DeSousa, and F.A. Kuehl, Jr., Leukotriene A4: preparation and enzymatic conversion in a cell-free system to leukotriene B4, J. Biol. Chem. 257: 13911 (1982).PubMedGoogle Scholar
  60. 60.
    M.K. Bach, J.R. Brashler, and D.R. Morton, Jr., Solubilization and characterization of the leukotriene C4 synthetase of rat basophil leukemia cells: a novel, particulate glutathione-S-transferase, Arch. Biochem. Biophys. 230: 455 (1984).CrossRefGoogle Scholar
  61. 61.
    R.A. Lewis and K.F. Austen, The biologically active leukotrienes: biosynthesis, metabolism, receptors, functions, and pharmacology, J. Clin. Invest. 73: 889 (1984).PubMedCrossRefGoogle Scholar
  62. 62.
    E.J. Corey, H. Park, A. Barton, and Y. Nii, Synthesis of three potential inhibitors of the biosynthesis of leukotrienes A-E, Tetrahedron Lett. 21: 4243 (1980).CrossRefGoogle Scholar
  63. 63.
    E. Razin, L.C. Romeo, S. Krilis, F.-T. Liu, R.A.Lewis, E.J. Corey, and K.F. Austen, An analysis of the relationship between 5-lipoxygenase product generation and the secretion of preformed mediators from mouse bone marrow-derived mast cells, J. Immunol. 133: 938 (1984).PubMedGoogle Scholar
  64. 64.
    M.K. Bach, J.R. Brashler, H.W. Smith, F.A. Fitzpatrick, F.F. Sun, and J.C. Maguire, 6,9-deepoxy-6,9-(phenylimino)-a638_ prostaglandin Il (U-60,257), a new inhibitor of leukotriene C and D synthesis: in vitro studies, Prostaglandins 23: 759 (1982).Google Scholar
  65. 65.
    B.M. Weichman, M.A. Wasserman, D.A. Holden, R.R. Osborn, D.F. Woodward, T.W. Ku, and J.G. Gleason, Antagonism of the pulmonary effects of the peptidoleukotrienes by a leukotriene D4 analog, J. Pharmacol. Exp. Ther. 227: 700 (1983).PubMedGoogle Scholar
  66. 66.
    R.C. Murphy, W.C. Pickett, B.R. Culp, and W.E.M. Lands, Tetraene and pentaene leukotrienes: selective production from murine mastocytoma cells after dietary manipulation, Prostaglandins. 22: 613 (1981).PubMedCrossRefGoogle Scholar
  67. 67.
    J.D. Prickett, D.R. Robinson, and A.D. Steinberg, Dietary enrichment with the polyunsaturated fatty acid eicosapentaenoic acid prevents proteinuria and prolongs survival in NZB x NZW F1 mice, J. Clin. Invest. 68: 556 (1981).PubMedCrossRefGoogle Scholar
  68. 68.
    J.D. Prickett, D.W. Trentham, and D.R. Robinson, Dietary fish oil augments the induction of arthritis in rats immunized with type II collagen, J. Immunol. 132: 725 (1984).PubMedGoogle Scholar
  69. 69.
    E.J. Corey, C. Shih, and J.R. Cashman, Docosahexaenoic acid is a strong inhibitor of prostaglandin but not leukotriene biosynthesis, Proc. Natl. Acad. Sci. USA 80: 3581 (1983).PubMedCrossRefGoogle Scholar
  70. 70.
    R.P.Orange, M.D. Valentine, and K.F. Austen, Antigen-induced release of slow reacting substance of anaphylaxis (SRS-Arat) in rats prepared with homologous antibody, J. Exp. Med. 127: 767 (1968).CrossRefGoogle Scholar
  71. 71.
    A.G. Leitch, T.H. Lee, E.W. Ringel, J.D Prickett, D.R. Robinson, S.G. Pyne, E.J. Corey, J.M. Drazen, K.F. Austen, and R.A. Lewis, Immunologically-induced generation of tetraene and pentaene leukotrienes in the peritoneal cavities of menhaden-fed rats, J. Immunol. 132: 2559 (1984).PubMedGoogle Scholar
  72. 72.
    T.H. Lee, J.-M. Mencia-Huerta, C. Shih, E.J. Corey, R.A. Lewis, and K.F. Austen, Characterization and biologic properties of 5,12-dihydroxy derivatives of eicosapentaenoic acid, including leukotriene B5 and the double lipoxygenase product, J. Biol. Chem. 259: 2383 (1984).PubMedGoogle Scholar
  73. 73.
    S. Hammarström, Conversion of 14C-labeled eicosapentaenoic acid (N-3) to leukotriene C5, Biochim. Biophys. Acta. 663: 575 (1981).Google Scholar
  74. 74.
    S.-E. Dahldn, P. Hedqvist, and S. Hammarström, Contractile activities of several cysteine-containing leukotrienes in the guinea pig lung strip, Eur. J. Pharmacol. 86: 207 (1982).CrossRefGoogle Scholar
  75. 75.
    T.H. Lee, R.A. Lewis, D.R. Robinson, J.M. Drazen, and K.F. Austen, The effects of a diet enriched in menhaden fish oil on the pulmonary response to antigen challenge, J. Allergy Clin. Immunol. 73: 150 (1984).CrossRefGoogle Scholar
  76. 76.
    E.A. Ham, D.D. Soderman, M.E. Zanetti, H.W. Dougherty, E. McCauley, and F.A. Kuehl, Jr., Inhibition by prostaglandins of leukotriene B4 release from activated neutrophil, Proc. Natl. Acad. Sci. USA. 80: 4349 (1983).CrossRefGoogle Scholar
  77. 77.
    L. Levine, R. Morgan, R.A. Lewis, K.F. Austen, D.A. Clark, A. Marfat, and E.J. Corey, Radioimmunoassay of the leukotrienes of slow reacting substance of anaphylaxis (SRS-A), Proc. Natl. Acad. Sci. USA. 78: 7692 (1981).PubMedCrossRefGoogle Scholar
  78. 78.
    E.C. Hayes, D.L. Lombardo, Y. Girard, A.L. Maycock, J. Rokach A.S. Rosenthal, R.M. Young, R.W. Egan, and H.J. Zweerink, Measuring leukotrienes of slow reacting substance of anaphylaxis: development of specific radioimmunoassay, J. Immunol. 131: 429 (1983).PubMedGoogle Scholar
  79. 79.
    K. Ochi, T. Yoshimoto, S. Yamamoto, K. Taniguchi, and T. Miyamoto, Arachidonate 5-lipoxygenase of guinea pig peritoneal polymorphonuclear leukocytes, J. Biol. Chem. 258: 5754 (1983).PubMedGoogle Scholar
  80. 80.
    R.J. Soberman, R.A. Lewis, E.J. Corey, and K.F. Austen, The characterization of two lipoxygenases from the human PMN, Fed. Proc. 43: 1879 (1984).Google Scholar
  81. 81.
    T.H. Lee, J.-M. Mencia-Huerta, C. Shih, E.J. Corey, R.A. Lewis, and K.F. Austen, Effects of exogenous arachidonic, eicosapentaenoic, and docosahexaenoic acids on the generation of 5-lipoxygenase pathway products by ionophoreactivated human neutrophils, J. Clin. Invest. (in press).Google Scholar
  82. 82.
    S. Fischer, C.V. Schacky, W. Siess, T. Strasser, and P.C. Weber, Uptake, release and metabolism of docosahexaenoic acid in human platelets and neutrophils, Biochem. Biophys. Res. Commun. 120: 907 (1984).CrossRefGoogle Scholar
  83. 83.
    H.O. Bang, and J. Dyerberg, Lipid metabolism and ischemic heart disease in Greenland Eskimoes, Adv. Lipid Res. 3: 1 (1980).Google Scholar
  84. 84.
    H. Herxheimer and O. Shaefer, Asthma in Canadian Eskimoes, N. Engl. J. Med. (correspondence) 291: 1419 (1974).Google Scholar
  85. 85.
    J. Dyerberg, H.O. Bang, G. Stoffersen, S. Moncada, and J.R. Vane, Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis, Lancet. 1: 117 (1978).CrossRefGoogle Scholar
  86. 86.
    P. Needleman, A. Raz, N.S. Minkes, A. Ferendelli, and H. Sprecher, Triene prostaglandins: prostacyclin and thromboxane biosynthesis and unique biological properties, Proc. Natl. Acad. Sci. USA. 76: 944 (1979).PubMedCrossRefGoogle Scholar
  87. 87.
    G.H.R. Rai, E. Radha, and J.G. White, Effect of docosahexaenoic acid (DHA) on arachidonic acid metabolism and platelet function, Biochem. Biophys. Res. Commun. 117: 5498 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Robert A. Lewis
    • 1
    • 2
  • Tak H. Lee
    • 1
    • 2
  • K. Frank Austen
    • 1
    • 2
  1. 1.Department of MedicineHarvard Medical SchoolBostonUSA
  2. 2.Department of Rheumatology and ImmunologyBrigham and Women’s HospitalBostonUSA

Personalised recommendations