Formation and Oxidative Degradation of Leukotrienes by Eosinophils and Neutrophils

  • William R. Henderson
Part of the NATO ASI Series book series (NSSA, volume 95)


Leukotrienes, formed by the lipoxygenation of arachidonic acid, are a potent group of chemical mediators that are important in inflammation. This paper will focus on leukotriene production by eosinophils. Eosinophilic leukocytes are prominent participants in inflammatory reactions but their function in these reactions has been previously poorly understood. Also to be discussed is how phagocytic cells can inactivate leukotrienes by oxidative mechanisms. Leukotriene inactivation by phagocyte generated peroxidase and hydroxyl radical systems may serve as a host defense mechanism to limit the great biologic activities of these mediators.


High Performance Liquid Chromatography Arachidonic Acid Chronic Granulomatous Disease Phorbol Myristate Acetate Calcium Ionophore A23187 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babior, B.M., 1984, The respiratory burst of phagocytes, J. Clin. Invest., 73: 599.PubMedCrossRefGoogle Scholar
  2. Babior, B.M., Kipnis, R.S., and Curnette, J.T., 1973, Biological defense mechanisms. The production by leukocytes of superoxide: a potential bactericidal agent, J. Clin. Invest., 52: 741.PubMedCrossRefGoogle Scholar
  3. Bach, M.K., Brashler, J.R., Hammarström, S., and Samuelsson, B., 1980, Identification of leukotriene C as a major component of slow reacting substance from rat mononuclear cells, J. Immunol., 125: 115.PubMedGoogle Scholar
  4. Baehner, R.L., and Johnston, R.B., Jr., 1971, Metabolic and bactericidal activities of human eosinophils, Br. J. Haematol., 20: 277.PubMedCrossRefGoogle Scholar
  5. Beeson, P., and Bass, D.A., 1977, “The Eosinophil. Major Problems in Internal Medicine Series,” W.B. Saunders Co., Philadelphia, 14: 167.Google Scholar
  6. Borgeat, P., and Samuelsson, B., 1979, Transformation of arachidonic acid by rabbit polymorphonuclear leukocytes. Formation of a novel dihydroxy-eicosatetraenoic acid, J. Biol. Chem. 254: 2643.PubMedGoogle Scholar
  7. Borgeat, P., Fruteau de Laclos, B., Rabinovitch, H., Picard, S., Braquet, P., Hébert, J., and Laviolette, M., 1984, Eosinophil-rich human polymorphonuclear leukocyte preparations characteristically release leukotriene C4 on ionophore A23187 challenge, J. Allergy Clin. Immunol., 74 (Suppl.): 310.PubMedCrossRefGoogle Scholar
  8. Burka, J.F., and Flower, R.J., 1979, Effect of modulators of arachidonic acid metabolism on the synthesis and release of slow-reacting substance of anaphylaxis, Br. J. Pharmacol., 65: 35.PubMedGoogle Scholar
  9. Clark, R.A., 1983, Extracellular effects of the myeloperoxidasehydrogen peroxide-halide system, in: “Advances in Inflammation Research,” Vol. 5., G. Weissmann, ed., Raven Press, New York, 107.Google Scholar
  10. Clark, R.A., and Klebanoff, S.J., 1979, Chemotactic factor inactivation by the myeloperoxidase-hydrogen peroxide-halide system. An inflammatory control mechanism, J. Clin. Invest., 64: 913.PubMedCrossRefGoogle Scholar
  11. Cotran, R.S., and Litt, M., 1969, The entry of granule-associated peroxidase into the phagocytic vacuole of eosinophils, J. Exp. Med., 129: 1291.PubMedCrossRefGoogle Scholar
  12. Dahlén, S-E., Hedqvist, P., Hammarström, S., and Samuelsson, B., 1980, Leukotrienes are potent constrictors of human bronchi. Nature, 288: 484.PubMedCrossRefGoogle Scholar
  13. Dahlün, S-E., Bjürk, P., Hedqvist, P., Arfors, K-E., Hammarstrüm, S., Lindgren, J-A, and Samuelsson, B., 1981, Leukotrienes promote plasma leakage and leukocyte adhesion in post capillary venules: in vivo effects with relevance to the acute inflammatory response. Proc. Nati. Acad. Sci. USA, 78: 3887.Google Scholar
  14. Edelson, P.J., and Cohn, Z.A., 1973, Peroxidase-mediated mammalian cell cytotoxicity. J. Exp. Med., 138: 318.PubMedCrossRefGoogle Scholar
  15. Fauci, A.S., Harley, J.B., Roberts, W.C., Ferrans, V.J., Gralnick, H.R., and Bjornson, B.H., 1982, The idopathic hypereosinophilic syndrome: clinical, pathophysiologic and therapeutic considerations. Ann. Int. Med. 97: 78.PubMedGoogle Scholar
  16. Fels, A.O., Pawlowski, N.A., Cramer, E.B., King, T.K.C., Cohn, Z.A., and Scott, W.A., 1982, Human alveolar macrophages produce leukotriene B4, Proc. Natl. Acad. Sci. USA, 79–7866.PubMedCrossRefGoogle Scholar
  17. Ford-Hutchinson, A.W., Bray, M.A., Doig, M.V., Shipley, M.E., and Smith, M.J.H., 1980, Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes, Nature (Lond.), 286: 264.CrossRefGoogle Scholar
  18. Goetzl, E.J., 1982, The conversion of leukotriene C4 to isomers of leukotriene B4 by human eosinophil peroxidase, Biochem. Biophys. Res. Commun., 106: 270.Google Scholar
  19. Goetzl, E.J., and Pickett, W.C., 1981, Novel structural determinants of the human neutrophil chemotactic activity of leukotriene B, J. Exp. Med., 153: 482.PubMedCrossRefGoogle Scholar
  20. Goetzl, E.J., Weller, P.F., and Sun, F.F., 1980, The regulation of human eosinophil function by endogenous mono-hydroxyeicosatetraenoic acids (HETE)s, J. Immunol., 124: 926.PubMedGoogle Scholar
  21. Goldyne, M.E., Burrish, G.F., Poubelle, P., and Borgeat, P., 1984, Arachidonic acid metabolism among human mononuclear leukocytes. Lipoxygenase-related pathways, J. Biol. Chem. 259: 8815.PubMedGoogle Scholar
  22. Gryglewski, R.J., Bunting, S., Moncada, S., Flower, R.J., and Vane, J.R., 1976, Arterial walls are protected against deposition of platelet thrombi by a substance (prostaglandin X) which they make from prostaglandin endoperoxides, Prostaglandins, 12: 685.PubMedCrossRefGoogle Scholar
  23. Henderson, W.R., and Chi, E.Y., 1984, In Press, Eosinophilic granuloma, in: “Progressive Stages of Neoplastic Growth,” H.E. Kaiser, ed., Pergamon Press, Oxford, England.Google Scholar
  24. Henderson, W.R., and Kaliner, M., 1979, Mast cell granule peroxidase: location, secretion and SRS-A inactivation, J. Immunol., 122: 1322.PubMedGoogle Scholar
  25. Henderson, W.R., and Klebanoff, S.J., 1983a, Leukotriene B4, C4, D and E inactivation by hydroxyl radicals, Biochem. Biophys.Res. Commun., 110: 266.Google Scholar
  26. Henderson, W.R., and Klebanoff, S.J., 1983b, Leukotriene production and inactivation by normal, chronic granulomatous disease and myeloperoxidase-deficient neutrophils, J. Biol. Chem., 258: 13522.Google Scholar
  27. Henderson, W.R., Chi, E.Y., and Klebanoff, S.J., 1980, Eosinophil peroxidase-induced mast cell secretion, J. Exp. Med., 152: 265.PubMedCrossRefGoogle Scholar
  28. Henderson, W.R., Harley, J.B., and Fauci, A.S., 1984, Arachidonic acid metabolism in normal and hypereosinophilic syndrome human eosinophils: generation of leukotrienes B4, C4, D4 and 15-lipoxygenase products. Immunology, 51: 679.PubMedGoogle Scholar
  29. Henderson, W.R., Hubbard, W.C., and Klebanoff, S.J., 1983a, Iodination of arachidonic acid by the iron-H2O2-iodide system, Lipids, 18: 390.CrossRefGoogle Scholar
  30. Henderson, W.R., Jörg, A., and Klebanoff, S.J., 1982, Eosinophil peroxidase-mediated inactivation of leukotriene B4, C4 and D4. J. Immunol., 128: 2609.PubMedGoogle Scholar
  31. Henderson, W.R., Harley, J.B., Fauci, A.S., and Klebanoff, S.J., 1983b, Leukotriene B4, C4, D4 generation by human eosinophils, J. Allergy Clin. Immunol., 71: 138.CrossRefGoogle Scholar
  32. Henderson, W.R., Chi, E.Y., Jong, E.C., and Klebanoff, S.J., 1981, Mast cell-mediated tumor-cell cytotoxicity. Role of the peroxidase system, J. Exp. Med., 153: 520.PubMedCrossRefGoogle Scholar
  33. Horn, B.R., Robin, E.D., Theodore, J., and Van Kessel, A., 1975, Total eosinophil counts in the management of bronchial asthma, N. Engl. J. Med., 292: 1152.PubMedCrossRefGoogle Scholar
  34. Humes, J.L., Sadowski, S., Galavage, M., Goldenberg, M., Subers, E., Bonney, R.J., and Kuehl, F.A., Jr., 1982, Evidence for two sources of arachidonic acid for oxidative metabolism by mouse peritoneal macrophages, J. Biol. Chem., 257: 1591.PubMedGoogle Scholar
  35. Jörg, A., Henderson, W.R., Murphy, R.C., and Klebanoff, S.J., 1982, Leukotriene generation by eosinophils, J. Exp. Med., 155: 390.PubMedCrossRefGoogle Scholar
  36. Lee, C.W., Lewis, R.A., Corey, E.J., Barton, A., Oh, H., Tauber, A.I., and Austen, K.F., 1982, Oxidative inactivation of leukotriene C by stimulated human polymorphonuclear leukocytes, Proc. Natl. Acad. Sci. USA, 79: 4166.CrossRefGoogle Scholar
  37. Lehrer, R.I., and Cline, M.J., 1969, Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to Candida infection, J. Clin. Invest., 48: 1478.PubMedCrossRefGoogle Scholar
  38. Martin, T.R., Altman, L.C., Albert, R.K., and Henderson, W.R., 1984, Leukotriene B4 production by the human alveolar macrophage: a potential mechanism for lung amplification, Am. Rev. Resp. Dis., 129: 106.PubMedGoogle Scholar
  39. Matheson, N.R., Wong, P.S., and Travis, J., 1979, Enzymatic inactivation of human alpha-l-proteinase inhibitor by neutrophil myeloperoxidase, Biochem. Biophys. Res. Commun., 88: 402.Google Scholar
  40. McCord, J.M., and Day, E.D., Jr., 1978, Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEES Lett., 86: 139.CrossRefGoogle Scholar
  41. Paredes, J-M., and Weiss, S.J., 1982, Human neutrophils transform prostaglandins by a myeloperoxidase-dependent mechanism, J. Biol. Chem., 257: 2738.PubMedGoogle Scholar
  42. Peck, M.J., Piper, P.J., and William, T.J., 1981, The effect of leukotrienes C4 and D4 on the microvasculature of guinea pig skin, Prostaglandins, 21: 315.PubMedCrossRefGoogle Scholar
  43. Peters, S.P., MacGlashan, D.W., Jr., Schulman, E.S., Schleimer, R. P., Hayes, E.C., Rokach, J., Adkinson, N.F., Jr., and Lichtenstein, L.M., 1984, Arachidonic acid metabolism in purified human lung mast cells, J. Immunol., 132: 1972.PubMedGoogle Scholar
  44. Rosen, H., and Klebanoff, S.J., 1976, Chemiluminescence and superoxide production by myeloperoxidase-deficient leukocytes, J. Clin. Invest., 58: 50.PubMedCrossRefGoogle Scholar
  45. Rosen, H., and Klebanoff, S.J., 1979, Bactericidal activity of a superoxide-generating system. A model for the polymorphonuclear leukocyte, J. Exp. Med., 149: 27.PubMedCrossRefGoogle Scholar
  46. Rouzer, C.A., Scott, W.A., Cohn, Z.A., Blackburn, P., and Manning, J.M., 1980, Mouse peritoneal macrophages release leukotriene C in response to a phagocytic stimulus, Proc. Natl. Acad. Sci. USA, 77: 4928.PubMedCrossRefGoogle Scholar
  47. Shaw, R.J., Cromwell, 0., and Kay, A.B., 1984, Preferential generation of LTC4/D4 by human eosinophils and LTB4 by neutrophils: evaluation by specific radioimmunoassay, J. Allergy Clin. Immunol., 73: 192.Google Scholar
  48. Turk, J., Henderson, W.R., Klebanoff, S.J., and Hubbard, W.C., 1983, Iodination of arachidonic acid mediated by eosinophil peroxidase, myeloperoxidase and lactoperoxidase: identification and comparison of products, Biochim. Biophys. Acta, 751: 189.Google Scholar
  49. Turk, J., Maas, R.L., Brash, A.R., Roberts, L.J. II, and Oates, J.A., 1982, Arachidonic acid 15-lipoxygenase products from human eosinophilsGoogle Scholar
  50. Vanderhoek, J.Y., Bryant, R.W., and Bailey, J.M., 1980, Inhibition of leukotriene biosynthesis by the leukocyte product, 15hydroxy-5,8,11,13-eicosatetraenoic acid, J. Biol. Chem., 255: 10064.PubMedGoogle Scholar
  51. Verhagen, J., Bruynzcel, P.L.B., Koedam, J.A., Wassink, G.A., de Boer, M., Terpstra, G.K., Kreukniet, J., Veldink, G.A., and Vliegenthart, J.F.G., 1984, Specific leukotriene formation by purified human eosinophils and neutrophils, FEBS Lett., 168: 23.PubMedCrossRefGoogle Scholar
  52. Weller, P.F., Lee, C.W., Foster, D.W., Corey, E.J., Austen, K.F., and Lewis, R.A., 1983, Generation and metabolism of 5lipoxygenase pathway leukotrienes by human eosinophils: predominant production of leukotriene C4, Proc. Natl. Acad. Sci. USA, 80: 7626.PubMedCrossRefGoogle Scholar
  53. Williams, J.D., Czop, J.K., and Austen, K.F., 1984, Release of leukotrienes by human monocytes on stimulation of their phagocytic receptor for particulate activators, J. Immunol., 132: 3034.PubMedGoogle Scholar
  54. Ziltener, H.J., Chavaillaz, P-A., and Jörg, A., 1983, Leukotriene formation by eosinophil leukocytes. Analysis with ion-pair high pressure liquid chromatography and effect of the respiratory burst. Hoppe-Seyler’s Z. Physiol. Chem. 364: 1029.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • William R. Henderson
    • 1
  1. 1.Department of MedicineUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations