Formation of Leukotrienes and other Eicosanoids in the Gastrointestinal Tract and Effect of Drugs

  • Brigitta M. Peskar
  • Karl W. Dreyling
  • Klaus Schaarschmidt
  • Harald Goebell
Part of the NATO ASI Series book series (NSSA, volume 95)


The gastrointestinal tract has a high capacity to synthesize eicosanoids from endogenous substrate. A great number of studies has shown the formation of cyclooxygenase-derived products of arachidonic acid metabolism by the tissues of the gastrointestinal tract of many species including man (for ref. 1). The amount and pattern of prostaglandins (PG) synthesized is species-specific and shows regional variations. Thus, in rat, guinea-pig and rabbit, gastric mucosal formation of PGI2 exceeds formation of PGE2 (2). Tissue of rat small intestine synthesizes considerably more PG than rat gastric tissue, PGD2 being the most prominant PG formed in this region (3, 4). In the human gastrointestinal tract we found mucosal PG generation to be most abundant in the stomach and duodenum, while mucosa of the small intestine and large bowel had lower PG synthesizing capacity (Fig. 1). In all regions of the human gastrointestinal tract PGE2 was the predominant mucosal PG synthesized (Fig. 1).


Colonic Mucosa Gastric Mucosal Damage Human Gastric Mucosa Human Colonic Mucosa Carbenoxolone Sodium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Johansson, and S. Bergström, Prostaglandins and protection of the gastroduodenal mucosa, ScandJGastroenterol Suppl. 77: 21 (1982).Google Scholar
  2. 2.
    B. J. R. Whittle, Role of prostaglandins in the defense of the gastric mucosa, In: “Brain Research Bulletin”, vol. 5, Suppl. 1, p. 7, ANKHO International Inc. (198o).Google Scholar
  3. 3.
    H. R. Knapp, O. Oelz, B. J. Sweetman, and J. A. Oates, Synthesis and metabolism of prostaglandins E2, F20 and D2 by the rat gastrointestinal tract. Stimulation by a hypertonic environment in vitro, Prostaglandins 15: 751 (1978).Google Scholar
  4. 4.
    B. M. Peskar, H. Weiler, E. E. Kröner, and B.A. Peskar, Release of prostaglandins by small intestinal tissue of man and rat in vitro and the effect of endotoxin in the rat in vivo, Prostaglandins 21, Suppl.: 9 (1981).Google Scholar
  5. 5.
    M. Ali, and J. W. D. McDonalds, Synthesis of thromboxane B2 and 6-keto-prostaglandin-Fla by bovine gastric mucosal and muscle microsomes, Prostaglandins 20: 245 (1980).Google Scholar
  6. 6.
    L. I. LeDuc, and P. Needleman, Regional localisation of prostacyclin and thromboxane synthesis in dog stomach and intestinal tract, J. Pharmacol. Exp. Ther. 211: 181 (1979).Google Scholar
  7. 7.
    A. Bennett, C. N. Hensby, G. J. Sanger, and I. F. Stamford, Metabolites of arachidonic acid formed by human gastrointestinal tissues and their actions on the muscle layers, Br. J. Pharmac 74: 435 (1981).Google Scholar
  8. 8.
    P. Sharon, S. Cohen. A. Zifroni, F. Carmeli, L. Ligumsky, and D. Rachmilewitz, Prostanoid synthesis by cultured gastric and duodenal mucosa: possible role in pathogenesis of duodenal ulcer, Scand J. Gastroenterol. 18: 1045 (1983).Google Scholar
  9. 9.
    B. M. Peskar, and H. Weiler, Carbenoxolone inhibits thromboxane B2 synthesis by human gastric mucosa, Gut 24: A480 (1983).Google Scholar
  10. 10.
    A. Robert, Cytoprotection by prostaglandins, Gastroenterology 77: 761 (1979).Google Scholar
  11. 11.
    I. H. M. Main, and B. J. R. Whittle, The effects of E and A prostaglandins on gastric mucosal blood flow and acid secretion in the rat, Br. J. Pharmac 49: 428 (1973).Google Scholar
  12. 12.
    B. J. R. Whittle, K. Boughton-Smith, S. Moncada, and J. R. Vane, Actions of prostacyclin (PGI2) and its product, 6-oxo-PGF1a on the rat gastric mucosa in vivo and in vitro, Prostaglandins 15: 955 (1978).Google Scholar
  13. 13.
    B. J. R. Whittle, G.L. Kauffman, and S. Moncada, Vasoconstriction with thromboxane A2 induces ulceration of the gastric mucosa, Nature 292: 472 (1981).Google Scholar
  14. 14.
    B. M. Peskar, and B. A. Peskar, On the metabolism of prostaglandins by human gastric mucosa, Biochim. Biophys. Acta 424: 43o (1976).Google Scholar
  15. 15.
    B. M. Peskar, Regional distribution of prostaglandin metabolizing enzymes in the mucosa of the human upper gastrointestinal tract, Acta hepato-gastroent 25: 49 (1978).Google Scholar
  16. 16.
    B. M. Peskar, B. Günter, and B. A. Peskar, Prostaglandins and prostaglandin metabolites in human gastric juice, Prostaglandins 2o: 419 (198o).Google Scholar
  17. 17.
    B. M. Peskar, On the synthesis of prostaglandins by human gastric mucosa and its modification by drugs, Biochim. Biophys. Acta 487: 3o7 (1977).Google Scholar
  18. 18.
    B. J. R. Whittle, G. A. Higgs, K. E. Eakins, S. Moncada, and J. R. Vane, Selective inhibition of prostaglandin production in inflammatory exudates and gastric mucosa, Nature 284: 371 (198o).Google Scholar
  19. 19.
    R. Allen, and M. Bleicher, Die Behandlung degenera- tiver Gelenkerkrankungen mit BiarisonR, Schweiz Rundschau Med. 46: 1481 (1977).Google Scholar
  20. 20.
    S. J. Konturek, N. Kwiecién, W. Obtulowics, A. Kiéc-Dembinska, M. Polanski, B. Kopp, E. Sito, and J. Olesky, Effect of carprofen and indomethacin on gastric functions, mucosal integrity and generation of prostaglandins in man, Hepatogastroenterol 29: 267 (1982).Google Scholar
  21. 21.
    R. J. Flower, and J. R. Vane, Inhibition of prostaglandin synthetase in brain explains the anti-paretic activity of paracetamol (4-acetarid.ophenol), Nature 24o: 410 (1972).Google Scholar
  22. 22.
    E. I. Takesne, J.W. Perrine, and J. H. Trapold, The anti-inflammatory profile of proquazone, Arch. int. Pharmacodyn 221: 122 (1976).Google Scholar
  23. 23.
    H. U. Gubler, and M. Baggiolini, Pharmacological properties of proquazone, Scand J. Rheumatol. 21: 8 (1978).Google Scholar
  24. 24.
    U. Aehringhaus, H. Weiler, B. A. Peskar, and B. M. Peskar, Molecular mechanisms of the gastric toxicity of anti-rheumatic drugs, Arch. Toxicol. im Druck.Google Scholar
  25. 25.
    B. M. Peskar, H. Weiler, and Ch. Meyer, Inhibition of prostaglandin production in the gastrointestinal tract by antiinflammatory drugs, in: “Advances in Inflammation Research”, vol. 6, K. D. Rainsford, G. D. Velo ed., Raven Press, New York, p. 39 (1984).Google Scholar
  26. 26.
    K. Brune, H. Gubler, and A. Schweitzer, Autoradio-graphic methods for the evaluation of anti-inflammatory drugs, Pharmacol. Ther 5: 199 (1979).Google Scholar
  27. 27.
    N. K. Boughton-Smith, and B. J. R. Whittle, Stimulation and inhibition of prostacyclin formation in the gastric mucosa and ileum in vitro by anti-inflammatory agents, Br. J. Pharmac 78: 173 (1983)Google Scholar
  28. 28.
    B. M. Peskar, H. Weiler, and B. A. Peskar, Effect of BW755C on prostaglandin synthesis in the rat stomach, Biochem. Pharmacol. 31: 1652 (1982).Google Scholar
  29. 29.
    R. Doll, I. D. Hill, and C.F. Hutton, Treatment of gastric ulcer with carbenoxolone sodium and oestrogens, Gut 6: 19 (1965).PubMedCrossRefGoogle Scholar
  30. 30.
    J. H. Baron, Effect of carbenoxolone sodium on human gastric acid secretion, Gut 18: 721 (1977).PubMedCrossRefGoogle Scholar
  31. 31.
    B. M. Peskar, Effects of carbenoxolone on the gastric mucosal prostaglandin and thromboxane system, Acta gastroent. Belg 46: 429 (1983).Google Scholar
  32. 32.
    B. M. Peskar, A. Holland, and B.A. Peskar, Effect of carbenoxolone on prostaglandin synthesis and degradation, J. Pharm. Pharmacol 28: 146 (1976).Google Scholar
  33. 33.
    W. Hollander, A. Tarnawski, H. Gergeley, and R. D. Zipser, Sucralfate protection of the gastric mucosa against ethanol-induced injury:a prostaglandin-mediated process? Scand J. Gastroenterol 19, Suppl. 101: 97 (1984).Google Scholar
  34. 34.
    W. Hollander, A. Tarnawsky, D. Cummings, W. J. Krause, H. Gergeley, and R.B. Zipser, Cytoprotective action of antacids against alcohol-induced gastric mucosal injury. Morphologic, ultrastructural and functional time sequence analysis, Gastroenterology 86: 1114 (1984).Google Scholar
  35. 35.
    S. R. Gould, and J. E. Lennard-Jones, Production of prostaglandins in ulcerative colitis and their inhibition by sulphasalazine, Gut 17: 828 (1976).Google Scholar
  36. 36.
    P. R. Smith, D. J. Dawson, and C. H. J. Swan, Prostaglandin synthetase activity in acute ulcerative colitis: effects of treatment with sulphasalazine, codein phosphate and prednisolone, Gut 2o: 8o2 (1978).Google Scholar
  37. 37.
    B. M. Peskar, T. Schlenker, and H. Weiler, Effect of sulphasalazine (SASP) and 5-aminosalicylic acid (5-ASA) on the human colonic prostaglandin (PG) system, Gut 23: A444 (1982).Google Scholar
  38. 38.
    B. M. Peskar, Effect of sulphasalazine and 5-aminosalicylic acid on the human colonic prostaglandin system, in: “New Trends in Pathophysiology and Therapy of the Large Bowel”,L. Barbara, M. Miglioli, and S. F. Phillips, eds., Elsevier Science Publish., Amsterdam, p. 185 (1983).Google Scholar
  39. 39.
    J. R. S. Hoult, and P.K. Moore, Sulphasalazine is a potent inhibitor of prostaglandin 15-hydroxydehydrogenase: possible basis for therapeutic action in ulcerative colitis, Br. J. Pharmac 64: 6 (1978).Google Scholar
  40. 40.
    K. Hillier, P. G. Mason, and C. L. Smith, Ulcerative colitis: prostaglandin metabolism and the effect of sulphasalazine, 5-amino salicylic acid and indomethacin in human colonic mucosa, Br. J. Pharmac. 73: 217P (1981).Google Scholar
  41. 41.
    P. Sharon, M. Ligumsky, D. Rachmilewitz, and U. Zor; Role of prostaglandins in ulcerative colitis. Enhanced production during active disease and inhibition by sulfasalazine, Gastroenterology 75: 638 (1978).Google Scholar
  42. 42.
    W. S. Rampton, and G.E. Sladen, The effect of sulphasalazine withdrawal on rectal mucosal function and prostaglandin E2 release in inactive ulcerative colitis, Scand J. Gastroent 16: 157 (1981).Google Scholar
  43. 43.
    J. Morley, Prostaglandins and lymphokines in arthritis, Prostaglandins 8: 315 (1974).Google Scholar
  44. 44.
    D. S. Rampton, and G. E. Sladen, Prostaglandin synthesis inhibitors in ulcerative colitis: flurbiprofen compared with conventional treatment, Prostaglandins 21: 417 (1981).Google Scholar
  45. 45.
    E. Goldin, and D. Rachmilewitz, Prostanoid cytoprotection for maintaining remission in ulcerative colitis. Failure of 15(R),15-methylprostaglandin E2, Dig Dis. Sci. 28: 807 (1983).Google Scholar
  46. 46.
    W. F. Stenson, and E. Lobos, Sulfasalazine inhibits the synthesis of chemotactic lipids by neutrophils, J. Clin. Invest 69: 494 (1982).PubMedCrossRefGoogle Scholar
  47. 47.
    P. Sharon, and W. F. Stenson, Enhanced synthesis of leukotriene B4 by colonic mucosa in inflammatory bowel disease, Gastroenterology 86: 453 (1984).Google Scholar
  48. 48.
    J. C. Sircar, C. F. Schwender, and M. E. Carethers, Inhibition of soybean lipoxygenase by sulphasalazine and 5-aminosalicylic acid: a possible mode of action in ulcerative colitis, Biochem Pharmacol. 32: 17o (1983).Google Scholar
  49. 49.
    C. J. Hawkey, N. K. Boughton-Smith, and B. J. R. Whittle, In: “Proceedings of the V. International Conference on Prostaglandins”, Florence, Raven Press, New York, p. 87 (1982).Google Scholar
  50. 50.
    R. H. Wölbling, U. Aehringhaus, B. A. Peskar, K. Morgenroth, and B. M. Peskar, Release of slow-reacting substance of anaphylaxis and leukotriene C4-like immunoreactivity from guinea-pig colonic tissue, Prostaglandins 25: 809 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Brigitta M. Peskar
    • 1
  • Karl W. Dreyling
    • 3
  • Klaus Schaarschmidt
    • 2
  • Harald Goebell
    • 1
  1. 1.Department of Gastroenterology, Medical ClinicUniversity of EssenEssenGermany
  2. 2.Department of General SurgeryUniversity of EssenEssenGermany
  3. 3.Department of PharmacologyRuhr-University of BochumBochumGermany

Personalised recommendations