Advertisement

The Application of Commercial Materials to the Construction of Small Superconducting Magnets

  • J. E. C. Williams
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 17)

Abstract

Superconducting magnets are being constructed by industry and by national laboratories in a wide range of sizes and types, from bubble chamber magnets storing many megajoules of energy to very small magnets storing only a few hundred joules of energy. A demarcation exists between the character of the superconductor used in large magnets and that of the material used for small magnets; the difference between them lies in the operating current densities. For reasons of economy, the current density in the windings of all types of superconducting magnets should be as high as possible. But in small magnets, storing typically less than 200 kJ of energy, compact high current density windings alone are competitive. It is this type of winding, as contrasted with the cryostatically stable windings of very large magnets, that is considered here.

Keywords

Dynamic Stability Critical Current Density Critical Field Commercial Material Small Magnet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. W. Anderson and Y. B. Kim, Rev. Mod. Phys., 36: 39 (1964).CrossRefGoogle Scholar
  2. 2.
    M. S. Lubell, B. S. Chandrasekhar, and G. T. Mallick, App. Phys. Lett., 3: 79 (1963).CrossRefGoogle Scholar
  3. 3.
    R. Hancox, in: Proceedings 10th International Conference on Low Temperature Physics, II B, Moscow (1966), p. 43.Google Scholar
  4. 4.
    C. Laverick, Nucleonics, 24: 46 (1966).Google Scholar
  5. 5.
    A. el Bindari, R. E. Bernert, and L. O. Hoppie, in: Advances in Cryogenic Engineering, Vol. 13, Springer Science+Business Media New York (1968), p. 30.Google Scholar
  6. 6.
    R. E. Hintz, in: Advances in Cryogenic Engineering, Vol. 13, Springer Science+Business Media New York (1968), p. 51.Google Scholar
  7. 7.
    H. R. Hart, in: Proceedings of the Summer Study on Superconducting Devices and Accelerators (Brookhaven Nat. Lab., Upton, N.Y.), BNL 50155 (1969), p. 571.Google Scholar
  8. 8.
    P. F. Chester, Report on Progress in Phys., 30: 561 (1967).CrossRefGoogle Scholar
  9. 9.
    Y. Iswasa and D. B. Montgomery, App. Phys. Lett., 7: 231 (1965).CrossRefGoogle Scholar
  10. 10.
    J. E. C. Williams, Phys. Lett., 19: 96 (1965).CrossRefGoogle Scholar
  11. 11.
    D. N. Cornish, J.S.I., 43: 16 (1966).Google Scholar
  12. 12.
    Y. Iwasa, C. Weggel, D. B. Montgomery, R. Weggel, and J. R. Hale, J. Appl. Phys., 40: 2006 (1969).Google Scholar
  13. 13.
    P. F. Smith, M. N. Wilson, and A. H. Spurway, Brit. J. Appl. Phys., 3: 1 (1970).Google Scholar
  14. 14.
    M. T. Taylor, A. Woolner, and A. C. Barber, Cryogenics, 8: 317 (1968).CrossRefGoogle Scholar
  15. 15.
    S. L. Wipf, Phys. Rev., 161: 404 (1967).CrossRefGoogle Scholar
  16. 16.
    J. E. Kunzler, J. Appl. Phys., 33: 1042 (1962).CrossRefGoogle Scholar
  17. 17.
    M. Benz, Trans. Metall. Soc. A.I.M.E., 242: 1067 (1968).Google Scholar
  18. 18.
    D. B. Montgomery, Appl. Phys. Lett., 1: 41 (1962).CrossRefGoogle Scholar
  19. 19.
    D. B. Montgomery, private communication.Google Scholar
  20. 20.
    E. Newback and K. Tachikawa, J. Less Common Metals, 19: 359 (1969).CrossRefGoogle Scholar
  21. 21.
    K. Tachikawa and Y. Iwasa, App. Phys. Lett., 16: 230 (1970).CrossRefGoogle Scholar
  22. 22.
    S. Foner, E. J. McNiff, B. T. Matthias, and E. Corenwitz, J. Appl. Phys., 40: 2010 (1969).Google Scholar
  23. 23.
    J. H. P. Watson, App. Phys. Lett., 16: 428 (1970).Google Scholar
  24. 24.
    A. R. Kaufman, paper E-6 presented at Applied Superconductivity Conference, Boulder, Colorado, June 1970.Google Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • J. E. C. Williams
    • 1
  1. 1.The Oxford Instrument Co. Ltd.OxfordEngland

Personalised recommendations