Advertisement

Storage and Handling of Cryogens

  • F. J. Edeskuty
  • K. D. WilliamsonJr.
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 17)

Abstract

The development of the liquid oxygen and liquid nitrogen technology is considerably older than that of liquid hydrogen and liquid helium which has been developed during the last two decades. This latter technology is more sophisticated because of the lower boiling temperature and smaller latent heat of vaporization of the lower boiling cryogens. The more demanding requirements for liquid hydrogen and liquid helium have lead to better handling procedures which are applicable to all cryogens. Table I shows the decrease of the heats of vaporization per unit volume as boiling temperatures decrease. Also shown is the sensible heat required to warm the vapors at 1 atm pressure from the saturation temperature to 540°R. Comparisons of these two heats indicate the importance of the refrigeration available in boil-off vapors.

Keywords

Effective Thermal Conductivity Liquid Hydrogen Heat Leak Liquid Oxygen Pressure Rise Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. B. Scott, Cryogenic Engineering, D. Van Nostrand, Princeton, New Jersey (1959), p. 152.Google Scholar
  2. 2.
    J. A. Derrington, R. Clare, D. E. Wood, and C. Norton, in: Proceedings of the XIIth International Congress of Refrigeration, Vol. 1, International Institute of Refrigeration (1969), p. 195.Google Scholar
  3. 3.
    R. H. Kropschot, in: Applied Cryogenic Engineering (R. W. Vance, ed.), John Wiley and Sons, New York (1962), chapt. 6.Google Scholar
  4. 4.
    R. H. Kropschot, Cryogenic Technology (R. W. Vance, ed.), John Wiley and Sons, New York (1963), chapt. 7.Google Scholar
  5. 5.
    R. F. Barron, Cryogenic Systems, McGraw-Hill, New York (1966).Google Scholar
  6. 6.
    K. A. Ebert and K. F. Windgassen, in: Proceedings of the Second International Cryogenic Engineering Conference, Iliffe Science and Technology Publication Ltd., Guildford, England (1968), p. 240.Google Scholar
  7. 7.
    D. H. Liebenberg and F. J. Edeskuty, in: International Advances in Cryogenic Engineering, Springer Science+Business Media New York (1965), p. 284.Google Scholar
  8. 7.
    D. H. Liebenberg and F. J. Edeskuty, in: International Advances in Cryogenic Engineering, Springer Science+Business Media New York (1965), p. 284.Google Scholar
  9. 9.
    R. B. Jacobs, in: Advances in Cryogenic Engineering, Vol. 8, Springer Science+Business Media New York (1963), p. 529.Google Scholar
  10. 10.
    J. C. Burke, W. R. Byrnes, A. H. Post, and F. E. Ruccia, in: Advances in Cryogenic Engineering, Vol. 4, Springer Science+Business Media New York (1960), p. 378.Google Scholar
  11. 11.
    F. J. Edeskuty, in: Cryogenic Technology (R. W. Vance, ed.), John Wiley and Sons, New York (1963), chapt. 12.Google Scholar
  12. 12.
    R. S. Thurston, J. D. Rogers, and V. J. Skoglund, in: Advances in Cryogenic Engineering, Vol. 12, Springer Science+Business Media New York (1967), p. 438.Google Scholar
  13. 13.
    W. G. Steward, in: Advances in Cryogenic Engineering, Vol. 10, Springer Science+Business Media New York (1965), p. 313.CrossRefGoogle Scholar
  14. 14.
    J. K. Novak, in: Advances in Cryogenic Engineering, Vol. 15, Springer Science+Business Media New York (1970), p. 346.Google Scholar
  15. 15.
    W. G. Flieder, W. J. Smith, and K. R. Wetmore, in: Advances in Cryogenic Engineering, Vol. 5, Springer Science+Business Media New York (1960), p. 111.Google Scholar
  16. 16.
    F. J. Edeskuty, in: Proceedings of the XIIth International Congress of Refrigeration, Vol. 1,International Institute of Refrigeration (1969), p. 283.Google Scholar
  17. 17.
    K. Boyer, H. Otway, and R. C. Parker, in: Advances in Cryogenic Engineering, Vol. 10, Springer Science+Business Media New York (1965), p. 273.CrossRefGoogle Scholar
  18. 18.
    F. J. Edeskuty, K. D. Williamson, Jr., and R. Reider, in: Cryogenic Fundamentals (G. Hasselden, ed.), Academic Press, London (1971), ch. 11.Google Scholar
  19. 19.
    A. Lapin, in: Advances in Cryogenic Engineering, Vol. 12, Springer Science+Business Media New York (1967), p. 198.Google Scholar
  20. 20.
    W. R. Thompson and C. S. Boncore, ia: Advances in Cryogenic Engineering, Vol. 12, Springer Science+Business Media New York (1967), p. 207.Google Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • F. J. Edeskuty
    • 1
  • K. D. WilliamsonJr.
  1. 1.Los Alamos Scientific LaboratoryUniversity of CaliforniaLos AlamosUSA

Personalised recommendations