Advertisement

Comparison of the Experimental Film Boiling Behavior of Carbon Monoxide with Several Film Boiling Correlations

  • G. J. Capone
  • E. L. ParkJr.
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 17)

Abstract

Earlier work by Bromley [1] has suggested an analysis for film boiling similar to Nusselt’s [2] development for condensation. As a result of visual observations, Bromley assumed a mechanism in which the vapor film is in dynamic equilibrium with the surrounding liquid. As the vapor rises under the action of buoyant forces, vapor is added to the film from the surrounding liquid. The resulting equation is given below.

Keywords

Heat Transfer Carbon Monoxide Heat Transfer Coefficient Horizontal Cylinder Vapor Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. A. Bromley, Chem. Eng. Progr., 46 (5): 221 (1950).Google Scholar
  2. 2.
    M. Jakob, Heat Transfer, Vol. 1, John Wiley & Sons, Inc., New York (1949).Google Scholar
  3. 3.
    L. A. Bromley, Ind. Eng. Chem., 44 (12): 2966 (1952).CrossRefGoogle Scholar
  4. 4.
    J. T. Banchero, G. E. Barker, and R. H. Boll, Chem. Eng. Progr. Symp. Series, 51 (17): 21 (1965).Google Scholar
  5. 5.
    B. P. Breen and J. W. Westwater, Chem. Eng. Progr., 58 (7): 67 (1962).Google Scholar
  6. 6.
    E. L. Park, Jr., Ph.D. Dissertation, University of Oklahoma, Norman, Oklahoma (1965).Google Scholar
  7. 7.
    V. J. Flanigan, Jr., Ph.D. Dissertation, University of Missouri, Rolla, Missouri (1967).Google Scholar
  8. 8.
    E. A. Guggenheim, Thermodynamics, North-Holland Publishing Co., Amsterdam (1959).Google Scholar
  9. 9.
    C. T. Sciance, Ph.D. Dissertation, University of Oklahoma, Norman, Oklahoma (1966).Google Scholar
  10. 10.
    V. J. Flanigan, and E. L. Park, Jr., in: Advances in Cryogenic Engineering, Vol. 16, Springer Science+Business Media New York (1971), p. 402.Google Scholar
  11. 11.
    G. J. Capone and E. L. Park, Jr., in: Advances in Cryogenic Engineering, Vol. 15, Springer Science+Business Media New York (1970), p. 283.Google Scholar
  12. 12.
    C. T. Sciance, C. P. Colver, and C. M. Sliepcevich, in: Advances in Cryogenic Engineering, Vol. 13, Springer Science+Business Media New York (1968), p. 647.Google Scholar
  13. 13.
    K. J. Baumeister and T. D. Hamill, NASA Tech. Note D-4035 (1967).Google Scholar
  14. 14.
    K. J. Baumeister and T. D. Hamill, “Film Boiling From a Thin Wire as an Optimal Boundary-Value Process”, Paper 67-HT-62, presented at 8th National Heat Transfer Conference, Aug. 1967.Google Scholar
  15. 15.
    K. J. Baumeister and R. J. Simoneau, in: Adrances in Cryogenic Engineering, Vol. 15, Springer Science+Business Media New York (1970), p. 286.Google Scholar
  16. 16.
    M. L. Pomerantz, J. Heat Transfer, 86C (2): 213 (1964).CrossRefGoogle Scholar
  17. 17.
    T. H. K. Frederking, AIChEJ, 5: 403 (1959).Google Scholar
  18. 18.
    G. J. Capone, M.S. Thesis, University of Missouri, Rolla, Missouri (1968).Google Scholar
  19. 19.
    C. B. Johler, M.S. Thesis, University of Missouri, Rolla, Missouri (1968).Google Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • G. J. Capone
    • 1
  • E. L. ParkJr.
    • 1
  1. 1.University of Missouri at RollaRollaUSA

Personalised recommendations