Advertisement

A Review of Physical Models and Heat-Transfer Correlations for Free-Convection Film Boiling

  • R. G. Bressler
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 17)

Abstract

In the past, film boiling as a cooling process has not found wide commercial applications, mainly due to the accompanying large temperature differences between the heated surface and the liquid, which may lead to destructively high surface temperatures. In recent years, however, film boiling has become more important due to technological advances in such areas as nuclear reactors, rocketry, and cryogenics. With the development of high-temperature-strength materials, it can be expected that film boiling will become attractive for other applications too. In cryogenic systems, film boiling occurs very frequently since the saturation temperatures of the fluids are relatively low.

Keywords

Rayleigh Number Vapor Flow Horizontal Cylinder Entropy Generation Rate Film Condensation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. G. Brentari and R. V. Smith, in: International Advances in Cryogenic Engineering, Springer Science+Business Media New York (1965), p. 325.Google Scholar
  2. 2.
    J. G. Leidenfrost, Duisburg (1756), transl. by C. Wares, Intl. J. Heat Transfer, 9: 1153 (1966).CrossRefGoogle Scholar
  3. 3.
    J. H. Awberry, J. Iron and Steel Inst., 144: 119 (1941).Google Scholar
  4. 4.
    L. A. Bromley, Chem. Eng. Progr., 46 (5): 221 (1950).Google Scholar
  5. 5.
    W. Nusselt, Zeitschrift VDI, 60: 541 (1916).Google Scholar
  6. 6.
    W. H. McAdams, J. N. Addoms, P. M. Rinaldo, and R. S. Day, Chem. Eng. Progr., 44: 639 (1948).Google Scholar
  7. 7.
    T. H. K. Frederking, AIChE J., 5: 403 (1959).CrossRefGoogle Scholar
  8. 8.
    Y. Y. Hsu and J. W. Westwater, AIChE J., 4: 58 (1958).CrossRefGoogle Scholar
  9. 9.
    A. P. Colburn, Ind. Eng. Chem., 26: 439 (1943).Google Scholar
  10. 10.
    E. Pohlhausen, ZAAM, 1: 115 (1912).Google Scholar
  11. 11.
    E. M. Sparrow and J. L. Gregg, Trans. ASME, J. Heat Transfer, 81: 13 (1959).Google Scholar
  12. 12.
    P. W. McFadden and R. J. Grosh, Argonne Natl. Lab., ANL-6060 (1959).Google Scholar
  13. 13.
    J. C. Koh, Trans. ASME, J. Heat Transfer, 84: 55 (1962).CrossRefGoogle Scholar
  14. 14.
    E. M. Sparrow and R. D. Cess, Trans. ASME, J. Heat-Transfer, 84: 84 (1962).Google Scholar
  15. 15.
    T. H. Frederking and J. A. Clark, in: Advances in Cryogenic Engineering, Vol. 8, Springer Science+Business Media New York (1963), p. 501.Google Scholar
  16. 16.
    H. Merte and J. A. Clark, in: Advances in Cryogenic Engineering, Vol. 7, Springer Science+Business Media New York (1962), p. 546.Google Scholar
  17. 17.
    J. Ruzicka, in: Problems of Low-Temperature Physics and Thermodynamics, Pergamon Press, New York (1956), p. 323.Google Scholar
  18. 18.
    H. Lamb, Hydrodynamics, 6th ed. Cambridge University Press, London (1932), p. 369.Google Scholar
  19. 19.
    Y. P. Chang, Trans. ASME, J. Heat Transfer, 81: 1 (1959).Google Scholar
  20. 20.
    H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed., Oxford University Press, London, (1948), p. 71.Google Scholar
  21. 21.
    N. Zuber, Ph.D. Dissertation, University of California, Los Angeles, Calif. (1959).Google Scholar
  22. 22.
    P. J. Berenson, Trans. ASME, J. Heat Transfer, 83: 351 (1961).CrossRefGoogle Scholar
  23. 23.
    V. M. Borishansky, in: Problems of Heat-Transfer During a Change of State, (S. S. Kutateldze, ed.) transl. AEC-tr-3405 (1959).Google Scholar
  24. 24.
    E. R. Hosler and J. W. Westwater, ARS J., 32: 553 (1962).CrossRefGoogle Scholar
  25. 25.
    J. H. Lienhard and P. T. Y. Wong, Trans. ASME, J. Heat Transfer, 86: 220 (1964).CrossRefGoogle Scholar
  26. 26.
    T. D. Hamill and K. J. Baumeister, NASA TN-D3925, (1967).Google Scholar
  27. 27.
    W. V. R. Malkus, Roy. Soc. Proc., 225A (1161): 196 (1954).CrossRefGoogle Scholar
  28. 28.
    N. Zuber, Intl. J. Heat Transfer, 6: 53 (1963).CrossRefGoogle Scholar
  29. 29.
    B. P. Breen and J. W. Westwater, Chem. Eng. Progr., 58 (7): 67 (1962).Google Scholar
  30. 30.
    S. J. Nukiyama, J. Soc. Mech. Engrgs. (Japan), 37: 367 (1934).Google Scholar
  31. 31.
    J. T. Banchero, G. E. Barker, and R. H. Boel, Chem. Eng. Progr., 51 (17): 21 (1955).Google Scholar
  32. 32.
    E. L. Park, Jr., C. P. Colver, and C. M. Sliepcevich, in: Advances in Cryogenic Engineering, Vol. 11, Springer Science+Business Media New York (1966), p. 516.CrossRefGoogle Scholar
  33. 33.
    J. S. Goodling and R. K. Irey, in: Advances in Cryogenic Engineering, Vol. 14, Springer Science+Business Media New York (1969), p. 159.Google Scholar
  34. 34.
    S. T. Sciance, C. P. Colver, and C. M. Sliepcevich, Chem. Eng. Progr. Symp. Ser., 63 (77): 115 (1967).Google Scholar
  35. 35.
    G. J. Capone and E. L. Park, Jr., in: Advances in Cryogenic Engineering, Vol. 15, Springer Science+Business Media New York (1970), p. 283.Google Scholar
  36. 36.
    L. E. Brown and C. P. Colver, in: Advances in Cryogenic Engineering, Vol. 13, Springer Science+Business Media New York (1968), p. 652.Google Scholar
  37. 37.
    K. J. Baumeister and R. J. Simoneau, in: Advances in Cryogenic Engineering, Vol. 15, Springer Science+Business Media New York (1970), p. 286.Google Scholar
  38. 38.
    J. C. Y. Koh, E. M. Sparrow, and J. P. Hartnett, Intl. J. Heat Transfer, 2: 69 (1961).CrossRefGoogle Scholar
  39. 39.
    A. Padilla and R. E. Balzhiser, AIChE Reprint No. 28 presented at 9th National Heat Transfer Conference, Seattle, Wash. Aug. 1967.Google Scholar
  40. 40.
    M. E. Ellion, Memo 20–88, Jet Propulsion Lab., Pasadena, California (1954).Google Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • R. G. Bressler
    • 1
  1. 1.University of TennesseeKnoxvilleUSA

Personalised recommendations