Advertisement

A Review of Film Boiling at Cryogenic Temperatures

  • Y. Y. Hsu
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 17)

Abstract

Among the various modes of heat transport to liquids, film boiling is considered to be an inefficient mechanism. However, in many practical engineering applications it occurs. Consequently, film boiling must be studied and understood for design applications. Film boiling is invariably encountered in quenching of metals, in chilling of biological species, in regenerative cooling of rockets, and in cooling down a cryogenic fuel tank, and occasionally film boiling can also happen in a nuclear reactor or in a cryomagnet.

Keywords

Heat Transfer Heat Transfer Rate Cryogenic Temperature Critical Heat Flux ASME Paper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. S. Godliski and K. J. Bell, in: Proceedings Third International Heat Transfer Conference, Vol. 4,AIChE (1966), p. 51.Google Scholar
  2. 2.
    B. S. Gottfried and K. J. Bell, Ind. Eng. Chem. Fund., 5: 561 (1966).CrossRefGoogle Scholar
  3. 3.
    B. M. Patel and K. J. Bell, “The Leidenfrost Phenomenon for Extended Liquid Mass,” Chem. Eng. Progr. Sym. Ser., 62 (64): 62 (1966).Google Scholar
  4. 4.
    L. H. J. Wachters, H. Bonne, and H. J. van Nouhuis, Chem. Eng. Sci., 21: 923 (1966).CrossRefGoogle Scholar
  5. 5.
    K. J. Baumeister, T. D. Hamill, and G. J. Schoessow, in: Proceedings Third International Heat Transfer Conference, Vol. 4,AIChE (1966), p. 66.Google Scholar
  6. 6.
    W. S. Bradfield, Ind. Eng. Chem. Fund. 5: 200 (1966).CrossRefGoogle Scholar
  7. 7.
    M. Cumo, G. E. Farello, and G. Ferrari, Chem. Eng. Progr. Symp. Ser., 65 (92): 175 (1969).Google Scholar
  8. 8.
    K. J. Bell, Chem. Eng. Progr. Symp. Ser., 63 (73): 79 (1967).Google Scholar
  9. 9.
    T. W. Hoffman, in: Proceedings Third International Heat Transfer Conference, Vol. 4,AIChE (1966), p. 267.Google Scholar
  10. 10.
    J. P. Maddox and T. H. K. Frederking, in: Advances in Cryogenic Engineering, Vol. 11, Springer Science+Business Media New York (1966), p. 536.CrossRefGoogle Scholar
  11. 11.
    L. D. Allen, in: Advances in Cryogenic Engineering, Vol. 11, Springer Science+Business Media New York (1966), p. 547.Google Scholar
  12. 12.
    H. L. Burge, Chem. Eng. Progr. Symp. Ser., 61 (59): 115 (1965).Google Scholar
  13. 13.
    K. J. Baumeister, R. C. Hendricks, and T. D. Hamill, “Metastable Leidenfrost States,” NASA TN D-3226 (1966).Google Scholar
  14. 14.
    G. J. Schoessow, D. R. Jones, and K. J. Baumeister, Chem. Eng. Progr. Symp. Ser., 64 (82): 95 (1968).Google Scholar
  15. 15.
    K. J. Baumeister and G. J. Schoessow, Chem. Eng. Progr. Symp. Ser., 65 (92): 167 (1969).Google Scholar
  16. 16.
    L. H. J. Wachters and N. A. J. Westerling, Chem. Eng. Sci., 21: 1047 (1966).CrossRefGoogle Scholar
  17. 17.
    E. G. Brentari and R. V. Smith, in: Advances in Cryogenic Engineering, Vol. 10, Springer Science+Business Media New York (1965), p. 325.Google Scholar
  18. 18.
    J. A. Clark, Chem. Eng. Progr. Symp. Ser.,64(87):93(1968).Google Scholar
  19. 19.
    L. A. Bromley, Chem. Eng. Progr., 46: 221 (1950).Google Scholar
  20. 20.
    Y. Y. Hsu, Ph.D. Dissertation, University of Illinois, Urbana, Illinois (1958).Google Scholar
  21. 21.
    J. C. Y. Koh, J. Heat Transfer, 84: 55 (1962).CrossRefGoogle Scholar
  22. 22.
    R. D. Cess and E. M. Sparrow, “Film Boiling in Forced-Convection Boundary-Layer Flow,” ASME Paper 60-WA-148 (1960).Google Scholar
  23. 23.
    F. Tachibana and S. Fukui, “Heat Transfer in Film Boiling to Subcooled Liquid,” in: International Developments in Heat Transfer,ASME (1960), p. 219.Google Scholar
  24. 24.
    K. Nishikawa and T. Ito, Int. J. Heat Mass Transfer, 9: 103 (1966).CrossRefGoogle Scholar
  25. 25.
    P. W. McFadden and R. J. Grosh, “High-Flux Heat Transfer Studies: An Analytical Investigation, of Laminar Film Boiling,” Rept. No. ANL-6060, Argonne National Lab. (1959).Google Scholar
  26. 26.
    Y. Y. Hsu and J. W. Westwater, AIChE J., 4 (l): 58 (1958).CrossRefGoogle Scholar
  27. 27.
    Y. Y. Hsu and J. W. Westwater, Chem. Eng. Progr. Symp. Ser., 56 (30): 15 (1960).Google Scholar
  28. 28.
    R. S. Dougall and W. M. Rohsenow, “Film Boiling on the Inside of Vertical Tubes with Upward Flow of the Fluid at Low Qualities,” Rept. MIT-TR-9079–26, Massachusetts Institute of Technology, Cambridge, Massachusetts (Sept. 1963).Google Scholar
  29. 29.
    C. D. Morgan, Ph.D. Dissertation, Lehigh University, Bethlehem, Pennsylvania (1965).Google Scholar
  30. 30.
    E. M. Greitzer, Ph.D. Dissertation, Harvard University, Cambridge, Massachusetts (1969).Google Scholar
  31. 31.
    F. F. Simon, S. S. Papell, and R. J. Simoneau, “Minimum Film-Boiling Heat Flux in Vertical Flow of Liquid Nitrogen,” NASA TN D-4307 (1968).Google Scholar
  32. 32.
    F. F. Simon and R. J. Simoneau, “Transition from Film to Nucleate Boiling in Vertical Forced Flow,” ASME Paper 69-HT-26 (1969).Google Scholar
  33. 33.
    G. E. Coury, Ph.D. Dissertation, University of Houston, Houston, Texas (1968).Google Scholar
  34. 34.
    P. J. Berenson, J. Heat Transfer, 83: 351 (1961).CrossRefGoogle Scholar
  35. 35.
    T. D. Hamill and K. J. Baumeister, in: Proceedings Third International Heat Transfer Conference, Vol. 4,AIChE (1966), p. 59.Google Scholar
  36. 36.
    E. Ruckenstein, Int. J. Heat Mass Transfer, 10: 911 (1967).CrossRefGoogle Scholar
  37. 37.
    T. H. K. Frederking, Y. C. Wu, and B. W. Clement, AIChEJ., 12: 238 (1966).CrossRefGoogle Scholar
  38. 38.
    Y. P. Chang, J. Heat Transfer, 81: 1 (1959).Google Scholar
  39. 39.
    J. Kistemaker, Physica, 29: 96 (1963).CrossRefGoogle Scholar
  40. 40.
    E. R. Hosler and J. W. Westwater, ARS J., 32: 553 (1962).CrossRefGoogle Scholar
  41. 41.
    C. T. Sciante, C. P. Colver, and C. M. Sliepcevich, Chem. Eng. Progr. Symp. Ser. 63 (77): 115 (1967).Google Scholar
  42. 42.
    L. E. Brown and C. P. Colver, in: Advances in Cryogenic Engineering, Vol. 13, Springer Science+Business Media New York (1968), p. 647.Google Scholar
  43. 43.
    P. C. Wayner, Jr. and S. G. Bankoff, AIChEJ., 11: 59 (1965).Google Scholar
  44. 44.
    V. K. Pai and S. G. Bankoff, AIChE J., 11: 65 (1965).CrossRefGoogle Scholar
  45. 45.
    V. K. Pai and S. G. Bankoff, AIChE J., 12: 727 (1966).CrossRefGoogle Scholar
  46. 46.
    T. D. Hamill and K. J. Baumeister, “Effect of Subcooling and Radiation on Film-Boiling Heat Transfer from a Flat Plate,” NASA TN D-3925 (1967).Google Scholar
  47. 47.
    B. P. Breen and J. W. Westwater, Chem. Eng. Progr., 58: 67 (1962).Google Scholar
  48. 48.
    K. J. Baumeister and T. D. Hamill, “Laminar Flow Analysis of Film Boiling from a Horizontal Wire,” NASA TN D-4035 (1967).Google Scholar
  49. 49.
    K. J. Baumeister and R. J. Simoneau, in: Advances in Cryogenic Engineering, Vol. 15, Springer Science+Business Media New York (1970), p. 286.Google Scholar
  50. 50.
    E. L. Park, Jr., C. P. Colver, and C. M. Sliepcevich, in: Advances in Cryogenic Engineering, Vol. 11, Springer Science+Business Media New York (1966), p. 516.Google Scholar
  51. 51.
    L. A. Bromley, N. R. LeRoy, and J. A. Robbers, Ind. Eng. Chem., 45: 2639 (1953).CrossRefGoogle Scholar
  52. 52.
    D. A. DiCicco and R. J. Schoenhals, J. Heat Transfer, 86: 457 (1964).CrossRefGoogle Scholar
  53. 53.
    D. R. Pitts, H. H. Yen, and T. W. Jackson, J. Heat Transfer, 90: 476 (1968).CrossRefGoogle Scholar
  54. 54.
    W. S. Bradfield, J. Heat Transfer, 89: 269 (1967).CrossRefGoogle Scholar
  55. 55.
    J. E. Merte, Jr. and J. A. Clark, J. Heat Transfer, 83: 233 (1961).CrossRefGoogle Scholar
  56. 56.
    T. H. K. Frederking, R. C. Chapman, and S. Wang, in: International Advances in Cryogenic Engineering, Springer Science+Business Media New York (1965), p. 353.Google Scholar
  57. 57.
    T. H. K. Frederking and J. A. Clark, in: Advances in Cryogenic Engineering, Vol. 8, Springer Science+Business Media New York (1963), p. 501.Google Scholar
  58. 58.
    R. C. Hendricks and K. J. Baumeister, “Similarity and Curvature Effects in Pool Film Boiling,” presented at Fourth International Heat Transfer Conference, Versailles, Paris, France (Aug. 31-Sept. 5, 1970 ).Google Scholar
  59. 59.
    R. C. Hendricks and K. J. Baumeister, “Film Boiling from Submerged Spheres,” NASA TN D-5124 (1969).Google Scholar
  60. 60.
    R. C. Hendricks and K. J. Baumeister, “Heat Transfer and Levitation of a Sphere in Leidenfrost Boiling,” NASA TN D-5694 (1970).Google Scholar
  61. 61.
    R. C. Hendricks and S. A. Ohm, “Critical Levitation Locii for Spheres on Cryogenic Fluids,” presented at the Cryogenic Engineering Conference, Boulder, Colo. (June 17–19, 1970 ).Google Scholar
  62. 62.
    L. C. Witte, Ind. Eng. Chem., Fund., 7: 517 (1968).Google Scholar
  63. 63.
    L. C. Witte, L. Baker, Jr., and D. R. Haworth, J. Heat Transfer, 90: 394 (1968).Google Scholar
  64. 64.
    S. Sideman, Ind. Eng. Chem., 58: 54 (1966).CrossRefGoogle Scholar
  65. 65.
    R. N. Jacobson and F. H. Shair, Ind. Eng. Chem., Fund., 9: 183 (1970).CrossRefGoogle Scholar
  66. 66.
    T. H. K. Frederking, Chem. Eng. Progr. Symp. Ser., 64 (87): 21 (1968).Google Scholar
  67. 67.
    J. S. Goodling and R. K. Irey, in: Advances in Cryogenic Engineering, Vol. 14, Springer Science+Business Media New York (1969), p. 159.Google Scholar
  68. 68.
    R. K. Irey, P. W. McFadden, and R. A. Madsen, in: International Advances in Cryogenic Engineering, Springer Science+Business Media New York (1965), p. 361.Google Scholar
  69. 69.
    G. P. Lemieux and A. C. Leonard, in: Advances in Cryogenic Engineering, Vol. 13, Springer Science+Business Media New York (1968), p. 624.Google Scholar
  70. 70.
    W. I. Rivers and P. W. McFadden, J. Heat Transfer, 88: 343 (1966).Google Scholar
  71. 71.
    D. M. Coulter, A. C. Leonard, and J. G. Pike, in: Advances in Cryogenic Engineering, Vol. 13, Springer Science+Business Media New York (1968), p. 640.Google Scholar
  72. 72.
    R. M. Holdredge and P. W. McFadden, in: Advances in Cryogenic Engineering, Vol. 11, Springer Science+Business Media New York (1966), p. 507.CrossRefGoogle Scholar
  73. 73.
    R. C. Hendricks, R. W. Graham, Y. Y. Hsu, and R. Friedman, “Experimental Heat Transfer and Pressure Drop of Liquid Hydrogen Flowing Through a Heated Tube,” NASA TN D-765(1961).Google Scholar
  74. 74.
    R. C. Hendricks, R. W. Graham, Y. Y. Hsu, and R. Friedman, “Experimental Heat-Transfer Results for Cryogenic Hydrogen Flowing in Tubes at Subcritical and Supercritical Pressures to 800 Pounds per Square Inch Absolute,” NASA TN D-3095 (1966).Google Scholar
  75. 75.
    J. P. Lewis, J. H. Goodykoontz, and J. F. Kline, “Boiling Heat Transfer to Liquid Hydrogen and Nitrogen in Forced Flow,” NASA TN D-1314 (1962).Google Scholar
  76. 76.
    A. A. Bishop, R. O. Sandberg, and L. S. Tong, “Forced Convection Heat Transfer at High Pressure After the Critical Heat Flux,” ASME Paper 65-HT-31 (1965).Google Scholar
  77. 77.
    E. E. Polomik, S. Levy, and S. G. Sawochka, “Film Boiling of Steam-Water Mixtures in Annular Flow at 800, 1100, and 1400 psi,” ASME Paper 62-WA-136 (1962).Google Scholar
  78. 78.
    S. Rankin, “Heat Transfer to Boiling Liquid under Conditions of High-Temperature Difference and Forced Convection.” Univ. of Delaware, Dept. of Chem. Eng., Tech. Rept. No. UD-FB-13 (1958).Google Scholar
  79. 79.
    Y. Y. Hsu, G. R. Cowgill, and R. C. Hendricks, “Mist-Flow Heat Transfer Using Single-Phase Variable-Property Approach,” NASA TN D-4149 (1967).Google Scholar
  80. 80.
    W. F. Laverty and W. M. Rohsenow, “Film Boiling of Saturated Liquid Flowing Upward Through a Heated Tube: High Vapor Quality Range,” Massachusetts Institute of Technology, Cambridge, Massachusetts, Rept. MIT-TR-9857–32 (1964).Google Scholar
  81. 81.
    R. P. Forslund and W. M. Rohsenow, “Thermal Non-Equilibrium in Dispersed Flow Film Boiling in a Vertical Tube,” Massachusetts Institute of Technology, Cambridge, Massachusetts, Rept. MIT-TR-75312–44 (1966).Google Scholar
  82. 82.
    S. J. Hynek, W. M. Rohsenow, and A. E. Bergles, “Forced-Convection Dispersed-Flow Film Boiling,” Massachusetts Institute of Technology, Cambridge, Massachusetts, Rept. DSR 70586–63 (1969).Google Scholar
  83. 83.
    A. W. Bennett, G. F. Hewitt, H. A. Kearsey, and R. K. F. Keeys, “Heat Transfer to Steam-Water Mixtures Flowing in Uniformly Heated Tubes in which the Critical Heat Flux has been Exceeded,” Proc. Inst. Mech. Eng.,182(Pt. 3H):258 (1967–68).Google Scholar
  84. 84.
    S. S. Papell, “Buoyancy Effects on Forced-Convective Boiling,” ASME Paper 67-HT-63 (1967).Google Scholar
  85. 85.
    R. A. Kruger, Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts (1961).Google Scholar
  86. 86.
    A. de LaHarpe, S. Lehongre, J. Mollard, and C. Johannes, in: Advances in Cryogenic Engineering, Vol. 14, Springer Science+Business Media New York (1969), p. 170.Google Scholar
  87. 87.
    S. S. Papell and D. D. Brown, “Inlet Effects on Boiling and Near-Critical Hydrogen Heat Transfer,” ASME Paper 69-HT-27 (1969).Google Scholar
  88. 88.
    N. Zuber and J. A. Findley, J. Heat Transfer, 87: 453 (1965).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • Y. Y. Hsu
    • 1
  1. 1.NASA Lewis Research CenterClevelandUSA

Personalised recommendations