Advertisement

Removal of Impurities from Gases to be Processed at Low Temperatures

  • B. F. Dodge
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 17)

Abstract

All gases of industrial importance are mixtures (solutions) of two or more components and the processes with which this paper is concerned have as their objective the separation of one or more of the components in a purified form either as a liquid or a gas. The undesirable components are classed as impurities and their concentration may vary over very wide limits from fractions of a part per million to over 50 % (by volume) and even approaching 100 % in the case of helium production.

Keywords

Molecular Sieve Hydrogen Sulfide Potassium Carbonate Solid Adsorbent Liquid Oxygen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Landsbaum, W. S. Dodds, and L. F. Stutzman, Ind. Eng. Chem., 47: 101 (1955).CrossRefGoogle Scholar
  2. 2.
    P. M. Schuftan and A. G. Mackie, Trans. Inst. Chem. Eng., 36: 137 (1958).Google Scholar
  3. 3.
    T. J. Webster, Proc. Roy. Soc. (London), A214: 61 (1952).CrossRefGoogle Scholar
  4. 4.
    C. McKinley, J. Brewer, and E. S. J. Wang, in: Advances in Cryogenic Engineering, Vol. 7, Springer Science+Business Media New York (1961), p. 114.Google Scholar
  5. 5.
    M. J. Hiza, C. K. Heck, and A. J. Kidnay, Chem. Eng. Progr. Symp. Ser., 64 (88): 57 (1968).Google Scholar
  6. 6.
    Z. Dokoupil, G. Van Soest, and M. P. D. Swenker, Appl. Sci. Res., A5: 182 (1956).CrossRefGoogle Scholar
  7. 7.
    M. J. Hiza and R. N. Herring, in: International Advances in Cryogenic Engineering, Springer Science+Business Media New York (1965), p. 182.Google Scholar
  8. 8.
    G. E. Smith, R. E. Sonntag, and G. J. Van Wylen, in: Advances in Cryogenic Engineering, Vol. 8, Springer Science+Business Media New York (1963), p. 162.Google Scholar
  9. 9.
    B. S. Kirk, W. T. Ziegler, and J. C. Mullins, in: Advances in Cryogenic Engineering, Vol. 6, Springer Science+Business Media New York (1961), p. 413.Google Scholar
  10. 10.
    A. Purer, L. Stroud, and T. O. Meyers, in: Advances in Cryogenic Engineering, Vol. 10, Springer Science+Business Media New York (1965), p. 398.CrossRefGoogle Scholar
  11. 11.
    J. J. Perry, J. A. O’Neil, and P. R. Doherty, in: Advances in Cryogenic Engineering, Vol. 15, Springer Science+Business Media New York (1970), p. 391.Google Scholar

References to Literature Where Further Information May be Obtained on Some of the Purification Methods

  1. catio1. W. H. Denton, B. Shaw, and D. E. Ward, Trans. Inst. Chem. Engr., 36:179 (1958); 37:277 (1959). (Purification of Hz by freezing out in reversing exchangers.)Google Scholar
  2. 2.
    D. B. Crawford, Chem. Eng. Progr., 46 (2):74 (1950). (Switch exchangers for purification in a gaseous 02 plant.)Google Scholar
  3. 3.
    W. Lehmer, in: Technology and Uses of Liquid Hydrogen, Macmillan, New York (1964), p. 350. (Regenerators used to purity H2 for distillation to produce D2.)Google Scholar
  4. 4.
    W. E. Lobo and G. T. Skaperdas, Trans. AIChE, 43:69 (1947). (Air purification in the reversing exchanger.)Google Scholar
  5. 1.
    G. Hochgesand, Ind. Eng. Chem., 62 (7):37 (1970). (Rectisol and Purisol processes for CO2 and H25.)Google Scholar
  6. 2.
    C. R. Baker and R. S. Paul, Chem. Eng. Progr., 59 (8):61 (1963). (Liquid CH4 and C3H8 for H2 purification.)Google Scholar
  7. 3.
    A. J. Teller and H. E. Ford, Ind. Eng. Chem., 50:1201 (1958). (Rate of absorption of CO2 by MEA in packed towers.)Google Scholar
  8. 4.
    N. A. Spector and B. F. Dodge, Trans. AIChE, 42:827 (1946). (Absorption rate data for CO2 from air by NaOH.)Google Scholar
  9. 5.
    J. B. Tepe and B. F. Dodge, Trans. AIChE, 39:255 (1943); M. Leva, AIChEJ, 1:224 (1955). (Absorption of CO2 by NaOH in packed towers.)Google Scholar
  10. 6.
    J. W. Mason and B. F. Dodge, Trans. AIChE, 32:27 (1936). (Equilibrium data for CO2 and ethanolamines.) Google Scholar
  11. 7.
    J. W. Gailer, F. Goodridge, and D. B. Atkin, Trans. Inst. Chem. Engr., 32 (Supplement), S3 (1954). (Equilibrium and rate data for CO2 by organic amines.)Google Scholar
  12. 8.
    F. A. Groves, B. W. Millington, and D. M. Newitt, Trans. Inst. Chem. Eng., 32 (Supplement), S108 (1954). (Regeneration of MEA after CO3 absorption.)Google Scholar
  13. 9.
    J. R. Howard, Trans. Inst. Chem. Eng., 32 (Supplement), 5147 (1954). (Practical problems in absorption of CO2 by water and ethanolamines.)Google Scholar
  14. 10.
    R. M. Reed, Pet. Processing, 2:907 (1947). (Operating problems in absorption by ethanolamines.)Google Scholar
  15. 11.
    A. L. Kohl and P. A. Buckingham, in: Proc. 39th Annual Convention, N.G.A.A. (1952), p. 90. (Fluor Processes for CO2 removal by physical absorption in an organic solvent.)Google Scholar
  16. 12.
    J. F. Mullowney, Pet. Ref., 36 (12): 149 (1957). (Economic comparison of seven schemes for removal of CO3 present in high concentrations by liquid solvents involving chemical reaction.)Google Scholar
  17. 13.
    W. H. Scholz, in: Advances in Cryogenic Engineering, Vol. 15, Plenum Press, New York (1970), p. 406. (Rectisol process.)Google Scholar
  18. 14.
    J. T. Hugill, Chemistry in Canada, 9: 25 (1957).Google Scholar
  19. 15.
    M. R. Jester, Trans. Inst. Chem. Engr., 36: 133 (1958).Google Scholar
  20. 16.
    Anon., Chem. Eng., 60 (7): 133 (1953). (Liquid N2 scrubbing for purification of synthesis gas.)Google Scholar
  21. 17.
    A. L. Shrier and P. V. Danckwerts, I.E.C. Fundamentals, 8:415 (1969). (Increase in rate of absorption of CO2 by K2CO3 solutions promoted by amines.)Google Scholar
  22. 18.
    H. G. Muhlbauer and P. R. Monaghan, Oil and Gas J., 55:139 (Apr. 29, 1957). (Equilibrium data for CO2 and H2S in MEA at 25°C and 100°C. References given to several other sources of similar data.)Google Scholar
  23. 19.
    F. C. Riesenfeld and J. F. Mullowney, Pet. Ref., 38 (5): 161 (1959). (Giammarco-Vetrocoke process for removing CO2 and H2S from gases. Comparison made with MEA and conventional hot carbonate process.)Google Scholar
  24. 20.
    A. G. Eickmeyer, Chem. Eng., 65(17): 113 (1958). ( Economics of the hot carbonate process. Comparison with MEA process. )Google Scholar
  25. 21.
    K. Greenwood and M. Pearce, Trans. Inst. Chem. Engrs., 31:201 (1953). (Rate of absorption of CO2 from atmospheric air by 2.5 normal NaOH solution.)Google Scholar
  26. 22.
    H. E. Benson, J. H. Field, and W. P. Haynes, Chem. Eng. Progr., 52:403 (1956). (Pilot-plant study of the hot K2CO3 process. Some equilibrium and ratedata.)Google Scholar
  27. 23.
    A. L. Kohl, Preprint 2, Gas Absorption Symposium, AIChE Meeting, New York (Dec. 12–15, 1954). (Plate efficiencies in the absorption of CO2 by MEA solutions.)Google Scholar
  28. 24.
    R. E. Emmert and R. L. Pigford, Preprint 5, Gas Absorption Symposium, AIChE Meeting, New York, (Dec. 12–15, 1954). (Theoretical treatment of the absorption of CO2 by MEA solutions and experimental data for wetted-wall columns.)Google Scholar
  29. 25.
    A. J. Teller, Chem. Eng., 67 (14): 111 (1960). (Rates of absorption of CO2 in solutions with chemicalreaction.)Google Scholar
  30. 26.
    H. E. Benson and J. H. Field, Pet. Ref., 39 (4): 127 (1960). (Data on the hot K2CO3process.)Google Scholar
  31. 1.
    Summary Technical Report of Division 11, NDRC Chap. 9 (1946). (Considerable experimental data on adsorption by solids with chemical reaction.)Google Scholar
  32. 2.
    W. T. Ziegler, NBS Rept. 5044 (Jan. 1957). (Adsorption of N2 from H2 by SiO2 gel at low temperature and elevatedpressure.)Google Scholar
  33. 3.
    V. J. Johnson, in: Advances in Cryogenic Engineering, Vol. 3, Springer Science+Business Media New York (1960), p. 11.(Removal of N2 from H2 by SiO2 gel at low temperatures.)Google Scholar
  34. 4.
    H. M. Barry, Chem. Eng., 67 (3): 105 (1960). (General discussion of fixed-bed adsorption with equilibrium and kinetic data and some design information.)Google Scholar
  35. 5.
    C. K. Hersch, Molecular Sieves, Reinhold Publishing Co., New York (1961).Google Scholar
  36. 6.
    J. C. Fails and W. D. Harris, Oil and Gas J., 58:86 (July 11, 1960). (Removal of CO2 from natural gas by molecular sieves.)Google Scholar
  37. 7.
    D. W. Rushton and W. Hays, Oil and Gas J., 59:102 (Sept. 18, 1961). [Selective adsorption of H2S from natural gas by a synthetic zeolite (Davison Chemical Co. 5–4 microtraps)].Google Scholar
  38. 8.
    S. Ruhemann, The Chem. Eng., 40A:61 ( Apr. 1962 ). ( Design of industrial gas dryers using solid adsorbents. )Google Scholar
  39. 9.
    M. J. Hiza and A. J. Kidnay, in: Advances in Cryogenic Engineering, Vol. 8, Springer Science+Business Media New York (1963), p. 174. (Comparison of three adsorbents for removing small concentrations of N2 and CH4 from H2 at low temperatures.)Google Scholar
  40. 10.
    J. I. Nutter and G. Burnet, Jr., AIChEJ., 9:202 (1963). (Design of fixed bed adsorbers for drying of air by molecular sieves.)Google Scholar
  41. 11.
    J. B. Fleming, R. J. Getty, and F. M. Townsend, Chem. Eng., 71 (18): 69 (1964). ( Theory and practice of drying gases by adsorption in fixed beds. Some data on the design of a dehydration unit in the helium plant at Liberal Kans. )Google Scholar
  42. 12.
    M. J. Coleman, B. J. Sollami, and K. Kammermeyer, I.E.C. Process Design and Development, 4:327 (1965). (Removal of CO2 from air by activated carbon and molecular sieves.)Google Scholar
  43. 13.
    A. Purer, L. Stroud, and T. O. Meyer, in: Advances in Cryogenic Engineering, Vol. 10, Springer Science+Business Media New York (1965), p. 398. (Ultra purification of Helium to less than 2 ppb of Ne by carbon adsorption at 35°K.)Google Scholar
  44. 14.
    A. J. Kidnay and M. J. Hiza, AIChEJ, 12:58 (1966). (Adsorption isotherms for small concentrations of N2 and CH4 in H2 at low temperature.)Google Scholar
  45. 15.
    T. L. Thomas and E. L. Clark, Oil and Gas J., 65:112 (Mar. 20, 1967). (Application of molecular sieves to the removal of H 2 O CO2 and S compounds from natural gas.)Google Scholar
  46. 16.
    A. J. Kidnay, M. J. Hiza, and P. F. Dickson, in: Advances in Cryogenic Engineering, Vol. 13, Springer Science+Business Media New York (1968), p. 398. (Adsorption Isotherms of CH4, N2, H2, binaries N2-H2 and CH4-H2 and a ternary mixture on carbon at 76°K.)Google Scholar
  47. 17.
    A. J. Kidnay, M. J. Hiza, and P. F. Dickson, in: Advances in Cryogenic Engineering, Vol. 14, Springer Science+Business Media New York (1969), p. 41. (Kinetics of adsorption of low concentrations of N2 andCH4 in H2 at 76°K.)Google Scholar
  48. 18.
    A. J. Glessner and A. L. Myers, Chem. Eng. Progr. Symp. Series, 65 (96): 73 (1969). (Equilibrium data for CO2, ethane and n-butane on molecular sieves at 35°C.)Google Scholar
  49. 19.
    R. Madey and J. Charles, Chem. Eng. Progr. Symp. Series, 65 (96): 11 (1969). (Transmission of CO2 through molecular sieves.)Google Scholar
  50. 20.
    H. A. Stewart and J. L. Heck, Chem. Eng. Progr., 65 (9):78 (1969); J. L. Wagner and H. A. Stewart, paper presented at the Novel Separation Systems Symposium, 3rd Joint AIChE-IIQPR Joint MeetingGoogle Scholar
  51. San Juan, Puerto Rico, May 17120, 1970. (Pressure-swing adsorption applied to purification of various H2-bearing streams.)Google Scholar
  52. 21.
    A. J. Robell and R. P. Merrill, Chem. Eng. Progr. Symp. Series, 65 (96): 100 (1969). (Adsorption dynamics in fixed beds.)Google Scholar
  53. 22.
    D. R. Silbernagel, Chem. Eng. Progr., 63 (4):99 (1967). (Molecular sieves used for purification in olefin plants.)Google Scholar
  54. 1.
    R. B. McBride and D. L. McKinley, Chem. Eng. Progr., 61 (3):81 (1965). (Purification of H2 by permeation through a palladium membrane. Operation data on existing plants.)Google Scholar
  55. 2.
    Bulletins of E. I. du Pont de Nemours and Company. (Data on Permasep permeators.)Google Scholar
  56. 1.
    R. E. Latimer, Chem. Eng. Progr., 63 (2):35 (1967). (Detailed discussion of air separation containing information on impurities and their removal.)Google Scholar
  57. 2.
    W. M. Deaton and P. V. Mullins, in: Technology of Liquid Helium, NBS Monograph 111 (R. H. Kropschot, B. W. Birmingham, and D. B. Mann, editors), U.S. Government Printing Office, Washington, D.C. (1968), pp. 13–25. (Purification of helium.)Google Scholar
  58. 3.
    L. Garwin, Cryogenics and Industrial Gases, 5 (6):23 (1970). (Purification of natural gas to be processed at low temperature and some discussion of purification in connection with other cryogenic processes.)Google Scholar
  59. 4.
    N. C. Updegraff, Chem. Eng. Progr., 53 (6):268 (1957). (A general discussion of the purification of gases for low-temperature processing.)Google Scholar
  60. 5.
    P. G. Prater, Cryogenics and Industrial Gases, 5 (5): 16 (1970). (Purification of natural gas to be liquefied for peak-shaving.)Google Scholar
  61. 6.
    R. B. Norden, Chem. Eng., 63(6):400 (1956). (Purification of H2 from coke-oven gas.)Google Scholar
  62. 7.
    P. Guillaumeron, Chem. Eng., 56 (7): 105 (1949). (Purification of H2 from coke-oven gas.) $. E. Karwat, The Chem. Eng., Paper No. 193, 294, 304 (Nov. 1965). Purification of H2 from coke-oven gas.)Google Scholar
  63. 9.
    C. S. Cronan, Chem. Eng., 66(16):60 (1959). (Production of an ultra-pure H2 from a refinery off-gas.)Google Scholar
  64. 10.
    D. F. Palazzo, W. C. Schreimer, and G. T. Skaperdas, Ind. Eng. Chem., 49:685 (1957). (Purification of H2 from Platformer off-gas.)Google Scholar
  65. 11.
    LNG Information Book, American Gas Association, Inc., New York (July 1968), pp. 14–18. (Purification of natural gas for liquefaction.)Google Scholar
  66. 12.
    Technology and Uses of Liquid Hydrogen, (R. B. Scott, W. H. Denton, and C. M. Nicholls, editors), The Macmillan Co., New York (1964). (Purification of H2-bearing gases to produce liquid H2.)Google Scholar
  67. 13.
    J. Markovs, M. N. Y. Lee, and B. E. Nasser, Chem. Eng. Progr., 65 (5):68 (1969). (Methods for determinations of small concentrations of H2O, CO2 and S compounds in gases.)Google Scholar
  68. 14.
    C. McKinley and F. Himmelberger, Chem. Eng. Progr., 53(3): 112 (1957). (Impurities in air and their relation to explosion hazardsin 02 plants. Considerable useful quantitative data.)Google Scholar
  69. 15.
    LNG: A sulfur-free fuel for power generation, Final Report, Project 8962, Institute of Gas Technology (May 1969).( Considerable detail on purifin methods for natural gasto be liquefied. )Google Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • B. F. Dodge
    • 1
  1. 1.Yale UniversityNew HavenUSA

Personalised recommendations