Heat Transfer with the Helium II Superfluid Film

  • D. H. Liebenberg
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 17)


The use of liquid helium as a fluid for heat transfer has increased as a consequence of the reduction in cost of the liquid and the necessity for operating equipment such as superconducting magnets at temperatures less than 13°K. The heat transfer properties of liquid helium change drastically at temperatures less than the superfluid transition temperature, T λ = 2.172°K [1]. In addition to the increased heat transport in the bulk fluid for T < T λ , a thin adsorbed film of helium forms over all surfaces. Because of the high mobility in the film, its presence can represent a large heat leak into a system and can also provide cooling to a system.


Heat Transfer Heat Transport Volume Flow Rate Heater Power Film Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. R. Atkins, Liquid Helium, Cambridge University Press, Cambridge (1959).Google Scholar
  2. W. E. Keller, Helium 3 and Helium 4, Springer Science+Business Media New York (1969).Google Scholar
  3. 2.
    V. Arp, Cryogenics, 10: 89 (1970).CrossRefGoogle Scholar
  4. 3.
    B. Bertman and T. A. Kitchens, Cryogenics, 8: 36 (1968).CrossRefGoogle Scholar
  5. 4.
    R. C. Chapman, Y. W. Chang, and T. H. K. Frederking, in: Advances in Cryogenic Engineering, Vol. 15, Springer Science+Business Media New York (1970), p. 290.Google Scholar
  6. 5.
    O. T. Anderson, D. H. Liebenberg, and J. R. Dillinger, Phys. Rev., 117: 39 (1960).CrossRefGoogle Scholar
  7. 6.
    J. S. Langer and M. E. Fisher, Phys. Rev. Letters, 19: 560 (1967).CrossRefGoogle Scholar
  8. 7.
    D. H. Liebenberg, Phys. Rev. Letters, 26: 744 (1971).CrossRefGoogle Scholar
  9. 8.
    G. L. Pollack, Reu. Mod. Phys., 41: 48 (1969).CrossRefGoogle Scholar
  10. 9.
    N. S. Snyder, Cryogenics, 10: 96 (1970).CrossRefGoogle Scholar
  11. 10.
    H. Montgomery and P. A. Matthew, Cryogenics, 6: 94 (1966).CrossRefGoogle Scholar
  12. 11.
    E. Long and L. Meyer, Phys. Rev., 98: 1616 (1955).CrossRefGoogle Scholar
  13. 12.
    G. Ahlers, J. Low Temperature Physics, 1: 159 (1969).CrossRefGoogle Scholar
  14. 13.
    B. Smith and H. A. Boorse, Phys. Reu., 99: 346 (1955).CrossRefGoogle Scholar
  15. 14.
    R. K. Waring, Phys. Rev., 99: 1704 (1955).CrossRefGoogle Scholar
  16. 15.
    R. W. Selden and J. R. Dillinger, Phys. Rev., A138: 1371 (1965).CrossRefGoogle Scholar
  17. 16.
    W. C. Black, E. C. Hirschkoff, A. C. Mota, and J. C. Wheatley, Rev. Sci. Jnstr., 40: 846 (1969).CrossRefGoogle Scholar
  18. 17.
    K. Fokkens, K. W. Taconis, and R. de Bruyn Ouboter, Physica, 32: 2129 (1966).CrossRefGoogle Scholar
  19. 18.
    L. J. Challis, Proc. Phys. Soc. (London), 80: 757 (1962).Google Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • D. H. Liebenberg
    • 1
  1. 1.Los Alamos Scientific LaboratoryUniversity of CaliforniaLos AlamosUSA

Personalised recommendations