Advertisement

Liquid-Phase Activity Coefficients at 15 to 273°K

  • R. E. Latimer
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 17)

Abstract

Guggenheim [1] has defined a class of liquid solutions as “simple mixtures” for which the equations for binary solutions are given as
$$RT\ln {\gamma _i} = wx_k^2$$
(1)
$$RT\ln {\gamma _k} = wx_i^2$$
(2)
Here γ is the liquid-phase activity coefficient, x is the mole fraction in the liquid phase, and the subscripts i and k denote the solute and the solvent, respectively. Guggenheim indicates that w is independent of x but will in general depend on T and P. In addition, he states “we are introducing the new name simple mixtures for mixtures conforming” to the above equations “and we emphasize that no restriction is placed on the temperature dependence of w.” He also notes that simple mixtures are important because their behavior is one of the simplest conceivable after ideal mixtures either from a mathematical or from a physical aspect; that many binary mixtures show a behavior which can be represented either accurately or approximately by the relationships for simple mixtures; and that statistical theory predicts that a mixture of two kinds of nonpolar molecules of similar shape and similar size should obey certain laws to which the relations for simple mixtures are a useful approximation. The relations for simple mixtures, as defined above, were first described by Porter in 1920 and then used by Heitler in 1926 to develop the model of liquids now generally recognized as the “quasi-crystalline” model. These relationships have also been used to correlate experimental measurements on various mixtures, especially by Hildebrand [2]. Guggenheim notes in passing that it was assumed by Heitler and subsequently generally accepted that the value of w should be independent of temperature but that this by no means followed from the quasi-crystalline model used in the derivation of the relation. Shortly thereafter, according to Guggenheim, Hildebrand [3] “defined a class of mixtures as regular solutions when S E = 0. It is doubtful whether a mixture, other than an ideal one, can be accurately regular. Nevertheless, the conception of a regular solution, as defined by Hildebrand, can be useful as a basis of comparison for real mixtures. Subsequently, Hildebrand used Heitler’s formulae with w independent of temperature to represent the properties of many regular solutions. Others came to associate these formulae and the model on which they were based with the name regular.“ In a subsequent publication Hildebrand [4] insisted that the term regular be restricted to his original definition of S E = O. In conformity with this preference Guggenheim introduced a new term of “simple mixtures” for mixtures conforming to (1) and (2).

Keywords

Binary System Activity Coefficient Regular Solution Generalize Correlation Liquid Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. E. A. Guggenheim, Thermodynamics, An Advanced Treatment for Chemists and Physicists, 3rd ed., North-Holland Publishing Co., Amsterdam, Holland (1957), pp. 166, 184–185, 246, 250–252, 259, 277, 299.Google Scholar
  2. 2.
    J. H. Hildebrand and R. L. Scott, The Solubility of Nonelectrolytes, 3rd ed. (1950) supplemented, Dover Publications, New York (1964), pp. vi—vii, 17–19, 35, 46–47, 67, 90–92, 120–123, 160.Google Scholar
  3. 3.
    J. H. Hildebrand, J. Am. Chem. Soc., 51:66 (1929); see equations (7) and (8) and conclusions 1 and 2.Google Scholar
  4. 4.
    J. H. Hildebrand, Nature, 168: 868 (1951).Google Scholar
  5. 5.
    R. E. Latimer, AIChEJ., 3 (1):75 (1957), points 1, 2, 3.Google Scholar
  6. 6.
    R. E. Latimer, unpublished reports, Linde Co. (Mar. 4, 1957—Jan. 14, 1958), points 5, 9a, 11, 13a, 16, 18, 19, 20, 21, 23, 24, 25.Google Scholar
  7. 7.
    R. E. Latimer, “Liquid-Phase Activity Coefficients at 15 to 273°K,” Preprint 43b, addenda and errata sheet, presented at 67th National AIChE Meeting, Atlanta, Feb. 15–18, 1970, points 1 thru 40. (Copies available from author.)Google Scholar
  8. 8.
    J. H. Hildebrand, personal communication (Mar. 5, 1970 ).Google Scholar
  9. 9.
    J. K. H. Inglis, Phil. Mag.,11:640 (1906), points 1, 3.Google Scholar
  10. 10.
    I. Burn and F. Din, Trans. Faraday Soc.,58 (7): 1341 (1962), point 1.Google Scholar
  11. 11.
    G. B. Narinskii, Kislorod,10 (3):9 (1957); J. Phys. Chem. (USSR),34:1778 (1960), point 1.Google Scholar
  12. 12.
    G. M. Wilson, P. M. Silverberg, and M. G. Zellner, in: International Advances in Cryogenic Engineering, Springer Science+Business Media New York (1965), p. 192; USAF Aero Propulsion Lab. Tech. Doc. Rpt. 64–64 (Apr. 1964), OTS, US Dept. of Commerce, points 1, 2, 3.Google Scholar
  13. 13.
    R. E. Latimer, in: International Advances in Cryogenic Engineering, Springer Science+Business Media New York (1965), p. 208, points 1, 2.Google Scholar
  14. 14.
    R. E. Latimer, Chem. Eng. Progr., 63 (2):35 (1967); ibid., 63 (3): 17 (1967); Preprint 41A, presented at 59th Annual AIChE Meeting, Detroit, Dec. 4–8, 1966, points I, 2, 3, 8, 27.Google Scholar
  15. 15.
    G. Holst and L. Hamburger, Z. physik. Chemie,91:513 (1916), point 2.Google Scholar
  16. 16.
    B. F. Dodge and A. K. Dunbar, J. Am. Chem. Soc.,49:591 (1927), point 3.Google Scholar
  17. 17.
    G. T. Armstrong, J. M. Goldstein, and D. E. Roberts, NBS J. Res.,55 (5):265 (1955), point 3.Google Scholar
  18. 18.
    G. H. Hanson, R. J. Hogan, F. N. Ruehlen, and M. R. Cines, Chem. Eng. Progr. Symp. Ser.,49 (6):37 (1953), point 4.Google Scholar
  19. 19.
    H. Cheung and D. 1-J Wang, Ind. Eng. Chem. Fund.,3 (4):355 (1964), points 5, 6a, 9a, 13a, 19, 22, 23, 25, 26.Google Scholar
  20. 20.
    A. M. Bekelman, unpublished experimental data, Linde Co. (1957), points 5, 9a, 11, 13a, 16, 18, 19, 20, 21, 23, 24, 25.Google Scholar
  21. 21.
    M. Ruhemann, Separation of Gases,2nd ed., Oxford Press (1949), pp. 60–61, point 7.Google Scholar
  22. 22.
    W. G. Fastowsky and J. G. Gurwitsch, Acta Physicochimica (USSR),11 (6):883 (1939), point 8.Google Scholar
  23. 23.
    A. Toyama, P. S. Chappelear, T. W. Leland, and R. Kobayashi, in: Advances in Cryogenic Engineering, Vol. 7, Springer Science+Business Media New York (1962), p. 125, point 6b.Google Scholar
  24. 24.
    M. Guter, D. M. Newitt, and M. Ruhemann, Proc. Roy. Soc. (A), 176:140 (1940); L. M. Volova, Zh. Fi:, Khim. 14:268 (1940), point 10.Google Scholar
  25. 25.
    O. T. Bloomer and J. D. Parent, I.G.T. Res. Bull. 17, p. 5 (Apr. 1952), point 9b.Google Scholar
  26. 26.
    C. K. Heck and P. L. Barrick, in: Advances in Cryogenic Engineering, Vol. 11,Springer Science+Business Media New York (1966), p. 349, point 12.Google Scholar
  27. 27.
    O. T. Bloomer, D. C. Gami, and J. D. Parent, I.G.T. Res. Bull. 22, p. 4 (July 1953), point 14.Google Scholar
  28. 28.
    W. B. Streett, R. E. Sonntag, and G. J. Van Wylen, J. Chem. Phys.,40 (5):1390 (1964), points 15a, 156.Google Scholar
  29. 29.
    C. K. Fleck and P. L. Barrick, in: Advances in Cryogenic Engineering, Vol. 11,Springer Science+Business Media New York (1967), p. 714, point 17.Google Scholar
  30. 30.
    W. B. Streett, Cryogenics,5 (1):27 (1965), point 27.Google Scholar
  31. 31.
    W. W. Akers, R. E. Kelley, and T. G. Lipscomb, Ind. Eng. Chem.,46 (12):2535 (1954), point 28.Google Scholar
  32. 32.
    M. Ruhemann and N. Zinn, Phys. Z. (USSR),12:389 (1937), point 29.Google Scholar
  33. 33.
    W. W. Akers, J. F. Burns, and W. R. Fairchild, Ind. Eng. Chem.,46 (12):2531 (1954), point 13b.Google Scholar
  34. 34.
    T. T. H. Verschoyle, Phil. Trans. Roy. Soc. (A), 130:189 (1931); F. Steckel and N. Zinn, Zh. Khim. Prom.,16:8 (1939); M. Ruhemann and N. Zinn, Phys. Z. (USSR),12:389 (1937), point 30.Google Scholar
  35. 35.
    W. B. Streett, J. Chem. Phys.,42 (2):500 (1965), points 31a, 31h.Google Scholar
  36. 36.
    A. L. Benham and D. L. Katz, AIChE J.,3 (l):33 (1957), point 32.Google Scholar
  37. 37.
    W. B. Streett and C. H. Jones, in: Advances in Cryogenic Engineering, Vol. 11, Springer Science+Business Media New York (1966), p. 356, points 33a, 33b.Google Scholar
  38. 38.
    J. C. Mullins and W. T. Ziegler, in: International Advances in Cryogenic Engineering, Springer Science+Business Media New York (1965), p. 171, points 34, 39.Google Scholar
  39. 39.
    G. H. Zenner and L. I. Dana, Chem. Eng. Progr. Symp. Ser.,59 (44):36 (1963), points 35, 36.Google Scholar
  40. 40.
    M. J. Hiza, C. K. Heck, and A. J. Kidnay, in: Advances in Cryogenic Engineering, Vol. 13,Springer Science+Business Media New York (1968), p. 343, point 37.Google Scholar
  41. 41.
    W. E. DeVaney, B. J. Dalton, and J. C. Meeks, Jr., J. Chem. Eng. Data,8 (4):473 (1963), point 38.Google Scholar
  42. 42.
    C. K. Heck and M. J. Hiza, AIChE J.,13 (3):593 (1967), point 40.Google Scholar
  43. 43.
    J. H. Hildebrand and R. L. Scott, Regular Solutions, Prentice-Hall, Englewood Cliffs, N.J. (1962), pp. 3–6.Google Scholar
  44. 44.
    J. H. Hildebrand, J. M. Prausnitz, and R. L. Scott, Regular and Related Solutions, Van Nostrand Reinhold, New York (1970), pp. 3–6.Google Scholar
  45. 45.
    J. A. Gerster, in: Perry’s Chemical Engineers’ Handbook, 4th ed., McGraw-Hill, New York (1963), p. 13–7.Google Scholar
  46. 46.
    R. E. Treybal, Liquid Extraction, McGraw-Hill, New York (1951), pp. 52–53.Google Scholar
  47. 47.
    L. N. Canjar, H. B. Ford, and R. T. Sebulsky, Petr. Ref, 36 (9): 291 (1957).Google Scholar
  48. 48.
    I. Prigogine and R. Defay, Chemical Thermodynamics, translated by D. H. Everett with revisions, J. Wiley and Sons, New York (1954), pp. 335–339, 391–392.Google Scholar
  49. 49.
    E. W. Slocum and B. F. Dodge, AIChE J., 10 (3): 364 (1964).CrossRefGoogle Scholar
  50. 50.
    G. M. Wilson, in: Advances in Cryogenic Engineering, Vol. 9, Springer Science+Business Media New York (1964), p. 168.Google Scholar
  51. 51.
    G. M. Wilson, in: Advances in Cryogenic Engineering, Vol. 11, Springer Science+Business Media New York (1966), p. 392.Google Scholar
  52. 52.
    G. M. Wilson, paper 15e presented at 65th National AIChE Meeting, Cleveland, Ohio, May 4–7, 1969. Points 9b, 19, 28, 30, 32, 37 are accurately fitted by (9).Google Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • R. E. Latimer
    • 1
  1. 1.Division of Aerojet-GeneralEnvirogenics CompanyEl MonteUSA

Personalised recommendations