Speculations of Superconductivity in Biological and Organic Systems

  • E. H. Halpern
  • A. A. Wolf
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 17)


London [1,2] speculated that superconductivity might exist in certain biological systems and specifically in the aromatic organic long-chain molecules which have conjugated double bonds containing π electrons (itinerant electrons). Utilizing this speculation of London and the BCS theory [3] of coupled electrons, Little [4] postulated the existence of an organic polymer that might be a superconductor at room temperature. Ladik et al.[ 5 ] discuss the possibility of superconductivity in DNA molecules at room temperature and claim that the attractive term in the BCS theory, would be larger than the Coulomb term between coupled electrons (or phonon-electron interaction). Ginzburg [6] discusses the problem of high-temperature superconductivity in terms of exciton mechanisms and describes a thin film sandwich of a metallic superconductor between organic dielectrics. Gamble [7] and McConnell talk about exciton mechanisms for organics and metallics codeposited and as films for enhancement effects of T c


Couple Electron PbSn Solder Sodium Cholate Persistent Current Organic Superconductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. J. London, Superfluids, Dover Publications, New York (1960), pp. 8–9.Google Scholar
  2. 2.
    F. J. London, J. Phys. Radium, 8: 397 (1937).CrossRefGoogle Scholar
  3. 3.
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev., 108(5): 1175 (1957).CrossRefGoogle Scholar
  4. 4.
    W. A. Little. Phys. Rev., 134 (6A): 1416 (1964).CrossRefGoogle Scholar
  5. 5.
    J. Ladik, G. Biczo, and J. Redley, Phys. Rev., 188 (2): 710 (1969).CrossRefGoogle Scholar
  6. 6.
    V. L. Gin/burg, Contemp. Phys., 9 (4): 355 (1968).CrossRefGoogle Scholar
  7. 7.
    F. R. Gamble, in: Proceedings of the Third Symposium, 1969 Spring Superconducting Symposia, Naval Research Laboratory, Washington, D.C. (1969).Google Scholar
  8. 8.
    R. H. Parmenter and W. R. Henson, Phys. Rev., B, 2 (1): 140 (1970).CrossRefGoogle Scholar
  9. 9.
    A. A. Wolf, E. H. Halpern, F. Rothwarf, L. Dubeck, J. Sherman, and D. Ford, “On Fractional Organic Superconductors,” submitted to Phys. Rev. for publication.Google Scholar
  10. 10.
    A. A. Wolf, J. Franklin Institute, 289 (3): 193 (1970).CrossRefGoogle Scholar
  11. 11.
    H. J. Morowitz, Energy Flow in Biology, Academic Press, New York (1968).Google Scholar
  12. 12.
    E. Roy John, Mechanisms of Memory, Academic Press, New York (1967).Google Scholar
  13. 13.
    A. L. Schawlow and G. E. Devlin, Phys. Rev., 113 (1): 120 (1959).CrossRefGoogle Scholar
  14. 14.
    J. P. Burger and D. St. James, in: Superconductivity, Vol. 2 ( R. D. Parks, ed.), Marcel Dekker, Inc., New York (1969), p. 1001.Google Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • E. H. Halpern
    • 1
  • A. A. Wolf
    • 1
  1. 1.Naval Ship Research and Development CenterAnnapolisUSA

Personalised recommendations