Modifications of Antibody Synthesis by Chloramphenicol

  • Melvin D. Schoenberg
  • Richard D. Moore
  • Austin S. Weisberger
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1)


When chloramphenicol (CM) is given in sufficient quantity before immunization or early in the inductive phase of antibody synthesis, there is an attenuation of antibody formation. This has been shown in animals and in cultures of lymphoid tissue [1–8]. Despite these studies, there is little information about the cellular aspects of the immune process in the presence of CM.


Endoplasmic Reticulum Golgi Apparatus Diphtheria Toxoid Antibody Synthesis Lymphocytic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.S. Weisberger and S. Wolfe, “Effect of chloramphenicol on protein synthesis,” Federation Proc., 23: 976, 1964.Google Scholar
  2. 2.
    A.S. Weisberger, T. Daniel, and A. Hoffman, “Suppression of antibody synthesis and prolongation of homograft survival by chloramphenicol,” J. Exptl. Med., 120: 183, 1964.CrossRefGoogle Scholar
  3. 3.
    W.T. Butler and A. H. Coons, “Studies on antibody production. XII. Inhibition of priming by drugs,” J. Exptl. Med., 120: 1051, 1964.CrossRefGoogle Scholar
  4. 4.
    A. Cruchaud and A.H. Coons, “Studies on antibody production. XIII. The effect of chloramphenicol on priming in mice,” J. Exptl. Med., 120: 1061, 1964.CrossRefGoogle Scholar
  5. 5.
    A.S. Weisberger, R.D. Moore, and M.D. Schoenberg, “Modification of experimental immune nephritis by chloramphenicol,” J. Lab. Clin. Med., 67: 58, 1966.PubMedGoogle Scholar
  6. 6.
    C. T. Ambrose and A. H. Coons, “Studies on antibody production. VIII. The inhibitory effect of chloramphenicol on the synthesis of antibody in tissue culture,” J. Exptl.Med., 117: 1075, 1963.CrossRefGoogle Scholar
  7. 7.
    S. E. Svehag, “Antibody formation in vitro by separated spleen cells: Inhibition by actinomycin and chloramphenicol,” Science, 146:659, 1964.PubMedCrossRefGoogle Scholar
  8. 8.
    S. E. Svehag, “In vitro secondary 19S and 7S antibody responses to poliovirus in membrane cultures of separated spleen cells,” Arch. Ges. Virusforsch., 15: 261, 1965.PubMedCrossRefGoogle Scholar
  9. 9.
    M.D. Schoenberg, A.B. Stavitsky, R.D. Moore, and M. J. Freeman, “Cellular synthesis of rabbit immunoglobulins during primary response to diphtheria toxoid — Freund’s adjuvant,” J. Exptl. Med., 121: 577, 1965.CrossRefGoogle Scholar
  10. 10.
    M.D. Schoenberg, J. C. Rupp, and R.D. Moore, “The cellular response of the spleen and its relationship to the circulating 19S and 7S antibody in the rabbit,” Brit. J. Exptl. Pathol., 45: 111, 1964.Google Scholar
  11. 11.
    A.B. Stavitsky, “Micromethods for the study of proteins and antibodies. I. Procedure and general applications of hemagglutination and hemagglutination—inhibition reactions with tannic acid and protein-treated red blood cells,” J.Immunol., 72: 360, 1954.PubMedGoogle Scholar
  12. 12.
    R.D. Moore, V. R. Mumaw, and M.D. Schoenberg, “Changes in anti- body-producing cells in the spleen during the primary response,” J. Exptl. Mol. Pathol., 4: 370, 1965.CrossRefGoogle Scholar
  13. 13.
    R.D. Moore and M.D. Schoenberg, Unpublished observations.Google Scholar
  14. 14.
    J. Mitchell, “Autoradiographic studies of nucleic acid and protein metabolism in lymphoid cells. I. Differences among members of the plasma cell sequence,” Australian J. Exptl. Biol. Med. Sci., 42: 347, 1964.CrossRefGoogle Scholar
  15. 15.
    J. Mitchell, “Autoradiographic studies of nucleic acid and protein metabolism inlymphoid cells. II. Stability and actinomycin sensitivity of rapidly formed RNA and protein,” Australian J. Exptl. Biol. Med. Sci., 42: 363, 1964.CrossRefGoogle Scholar
  16. 16.
    B. Mach and P. Vassalli, “Biosynthesis of RNA in antibody-producing tissues,” Proc. Nat. Acad. Sci. U. S., 54: 975, 1965.CrossRefGoogle Scholar
  17. 17.
    M. Nomura and J.D. Watson, “Ribonucleoprotein particles within chloromycetin-inhibited E. coli,” J. Mol. Biol., 1: 204, 1952.CrossRefGoogle Scholar
  18. 18.
    A.B. Pardee, K. Paigen, and L. S. Prestidge, “A study of the ribonucleic acid of normal and chloromycetin-inhibited bacteria by zone electrophoresis,” Biochim. Biophys. Acta, 23: 162, 1957.PubMedCrossRefGoogle Scholar
  19. 19.
    S. Dagley and J. Sykes, “Effect of drugs upon components of bacterial cytoplasm,” Nature, 183: 1608, 1959.PubMedCrossRefGoogle Scholar
  20. 20.
    S. Dagley, A. E. White, and D. G. Wild, “Synthesis of protein and ribosomes by bacteria, ” Nature, 194: 25, 1962.PubMedCrossRefGoogle Scholar
  21. 21.
    K. Hosokawa and M. Nomura, “Incomplete ribosomes produced in chloramphenicol and puromycin-inhibited E. coli,” J. Mol. Biol., 12: 225, 1965.PubMedCrossRefGoogle Scholar
  22. 22.
    D. Vazques, “The binding of chloramphenicol by ribosomes from Bacillus megaterium,” Biochem. Biophys. Res. Commun., 15: 464, 1964.CrossRefGoogle Scholar
  23. 23.
    D. T. Dubin and A. T. Elkert, “Some abnormal properties of chloramphenicol RNA, ” J. Mol. Biol., 10: 508, 1964.PubMedCrossRefGoogle Scholar
  24. 24.
    R. Rendi and S. Ochoa, “Effect of chloramphenicol on protein synthesis in cell-free preparations of E. coli, ” J. Biol. Chem., 237: 3711, 1962.PubMedGoogle Scholar
  25. 25.
    R. Rendi, “The effect of chloramphenicol on the incorporation of labeled amino acids into proteins by isolated subcellular fractions from rat liver,” Exptl. Cell. Res., 18: 187, 1959.PubMedCrossRefGoogle Scholar
  26. 26.
    G. von Ehrenstein and F. Lipmann, “Experiments on hemoglobin biosynthesis,” Proc. Nat. Acad. Sci. U. S., 47: 941, 1961.CrossRefGoogle Scholar
  27. 27.
    E. H. Allen and R.S. Schweet, “Synthesis of hemoglobin in a cell-free system. I. Properties of the complete system,” J.Biol. Chem., 237: 760, 1962.PubMedGoogle Scholar
  28. 28.
    A.S. Weisberger, S. Wolfe, and S. Armentrout, “Inhibition of protein synthesis in mammalian cell-free systems by chloramphenicol,” J. Exptl. Med., 120: 161, 1964.CrossRefGoogle Scholar
  29. 29.
    H. Amos, “Effect of actinomycin D and chloramphenicol on protein synthesis in chick fibroblasts,” Biochim. Biophys. Acta, 80: 269, 1964.PubMedGoogle Scholar
  30. 30.
    N. Talai and E.D. Exum, “Two classes of spleen ribosomes with different sensitivities to chloramphenicol,” Proc. Nat. Acad. Sci. U. S., 55: 1288, 1966.CrossRefGoogle Scholar
  31. 31.
    G. E. Palade, “A small particulate component of the cytoplasm,” J. Biophys. Biochem. Cytol., 1: 59, 1955.PubMedCrossRefGoogle Scholar
  32. 32.
    M. L. Peterman, The Physical and Chemical Properties of Ribosomes. New York, Elsevier Publishing Co., 1964. (Page 11 contains an extensive list of references on the relationship of endoplasmic reticulum to protein synthesis.)Google Scholar

Copyright information

© Springer Science+Business Media New York 1967

Authors and Affiliations

  • Melvin D. Schoenberg
    • 1
  • Richard D. Moore
    • 1
  • Austin S. Weisberger
    • 1
  1. 1.Department of Pathology and MedicineWestern Reserve UniversityClevelandCanada

Personalised recommendations