Application of a Mathematical Model to the Study of RES Phagocytosis in Mice

  • Richard K. Fred
  • Moris L. Shore
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1)


A mathematical model of RES phagocytic function has been developed. Data obtained using this model are compatible with results obtained from animal experimentation. Following administration of a large dose of colloidal carbon, the clearance observed in the “blood” is initially zero order, gradually changing to first order as the concentration in “blood” decreases. It may therefore be invalid to accept the previous conclusions that colloid clearance follows first-order kinetics, with rate constants that are dependent upon initial concentration. Short segments of model clearance curves may appear to be first order when in fact they may be zero order.

Analysis of model behavior suggests that at low and intermediate concentrations of carbon the RES does not exhibit its maximal functional capacity. By using high doses of carbon, however, the maximum functional capacity of the RES is measured. The effect of radiation on the maximum functional capacity of the RES in CD-1 mice was tested. 137Cs gamma radiation (LD05/30) decreased the phagocytic capacity of the RES by approximately 13%. Experiments with puromycin suggest that protein synthesis does not limit the functional capacity of the RES. Doses of puromycin that profoundly decreased protein synthesis were without effect on phagocytosis.


Phagocytic Function Semilogarithmic Plot Clearance Curve Saturate Dose Colloid Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Biozzi, B. Benacerraf, and B. N. Halpern, Brit. J. Exptl. Pathol., 34: 441, 1953.Google Scholar
  2. 2.
    G. Biozzi and C. Stiffel, in: H. Popper and F. Schnaffiner, Eds., Progress in Liver Diseases, New York, Grune and Stratton Inc., 1965, p. 166.Google Scholar
  3. 3.
    R. K. Fred, J. G. Harris, and M. L. Shore, J. Reticuloendothelial Soc., 2: 344, 1965. (Abstract) Full text to be published.Google Scholar
  4. 4.
    W.O. Fenn, J. Gen. Physiol., 4: 373, 1922.PubMedCrossRefGoogle Scholar
  5. 5.
    E. R. Gabrieli. and F.M. Snell, J. Reticuloendothelial Soc., 2: 141, 1965Google Scholar
  6. 6.
    T.M. Saba and N.H. Di Luzio, J. Reticuloendothelial Soc., 2: 437, 1965.Google Scholar
  7. 7.
    S. J. Normann and E. P. Benditt, J. Exptl. Med., 122: 709, 1965.CrossRefGoogle Scholar
  8. 8.
    B. Benacerraf, E. Kivy-Rosenberg, M. M. Sebestyen, and B. Zweifach, J. Exptl. Med., 110: 49, 1959.CrossRefGoogle Scholar
  9. 9.
    B. Benacerraf, M. M. Sebestyen, and S. Schlossman, J. Exptl. Med., 110: 27, 1959.CrossRefGoogle Scholar
  10. 10.
    J. P. Filkins, R. E. Chase, and J.J. Smith, J. Reticuloendothelial Soc., 2: 287, 1965.Google Scholar
  11. 11.
    C.R. Jenkin and D. Rowley, J. Exptl. Med., 114: 363, 1961.CrossRefGoogle Scholar
  12. 12.
    E. L. Dobson, in: B.N. Halpern, B. Benacerraf, and J.F. Delafres-naye, Eds., Physiopathology of the Reticuloendothelial System: A Symposium, Oxford, Blackwell Scientific Publications, 1955, p. 80.Google Scholar
  13. 13.
    B. Benacerraf, G. Biozzi, A. Cuendet, and B.N. Halpern, J. Physiol., 128: 10, 1955.Google Scholar
  14. 14.
    H.G. Parker and C.R. Finney, Am. J. Physiol., 198: 916, 1960.PubMedGoogle Scholar
  15. 15.
    S.J. Riggi and N. R. Di Luzio, Am. J. Physiol., 200: 297, 1961.Google Scholar
  16. 16.
    GuntherWagner Pelikan Ink Works, Hanover, Germany.Google Scholar
  17. 17.
    B. N. Halpern, B. Benacerraf, and G. Biozzi, Brit. J. Exptl. Pathol., 34: 426, 1953.Google Scholar
  18. 18.
    W.R. Keene and J. H. Jandl, Blood, 26: 157, 1965.PubMedGoogle Scholar
  19. 19.
    Puromycin Dihydrochloride, M.W. 544.5, M.P. 175-177°, Nutritional Biochemicals Corp., Cleveland, Ohio, Refs.: (i) Waller et al., J.Am. Chem. Soc., 75: 2025, 1953, (ii) Porter et al., Antibiot. Chemotherapy, 2: 409, 1952.Google Scholar
  20. 20.
    L-LeucineC14 (uniformly labeled), 1.7 me/mg, Lot No. 190-117c-46, New England Nuclear Corporation, Boston, Mass.Google Scholar
  21. 21.
    Hydroxide of Hyamine* R 10-x, p-(diisobutyl-cresoxyethoxyethyl) dimethylbenzylammonium hydroxide, 1 molar in methanol, Lot No. 1193, Packard Instrument Co., Inc., LaGrange, Ill.Google Scholar
  22. 22.
    R. C. Meade and R.A. Steiglitz, Intern. J. Appi. Radiation Isotopes, 13:11, 1962 CrossRefGoogle Scholar
  23. 23.
    F.N Hayes, in: S. Rothchild, Ed., Advances in Tracer Methodolog Vol. 3, New York, Plenum Press, 1966, p. 81.Google Scholar
  24. 24.
    S. Moore, D. H. Spackman, and W. H. Stein, Anal. Chem., 30 (7): 1185, 1958.CrossRefGoogle Scholar
  25. 25.
    G.A. Bray, Anal. Biochem., 1: 279, 1960.CrossRefGoogle Scholar
  26. 26.
    Glucan, Lot No. IF 5500, Fleischmann Laboratories, Division of Standard Brands, Inc., Stamford, Conn.Google Scholar
  27. 27.
    S. typhosa endotoxin (DiFco). Kindly furnished by Dr. W. W. Smith, National Cancer Institute, Bethesda, Md.Google Scholar
  28. 28.
    L. S. Kelly, E. L. Dobson, C. R. Finney, and J.D. Hirsch, Am. J. Physiol., 198: 1134, 1960.PubMedGoogle Scholar
  29. 29.
    E.L. Dobson, L.S. Kelly, and C.R. Finney, The Physiologist, 3: 50, 1960.Google Scholar
  30. 30.
    R.W. Brauer, in: R.W. Brauer, Ed., Liver Function, Washington, D. C., American Institute of Biological Sciences, 1958, p. 113.Google Scholar

Copyright information

© Springer Science+Business Media New York 1967

Authors and Affiliations

  • Richard K. Fred
    • 1
  • Moris L. Shore
    • 1
  1. 1.U. S. Department of Health, Education, and WelfareU. S. Public Health ServiceRockvilleUSA

Personalised recommendations