Advertisement

Biotransformation of Drugs

  • James R. Gillette
  • Jack A. Hinson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 97)

Abstract

During the past several years it has become generally accepted that the incidence of adverse reactions to drugs in patients increase with age (1–3). However, the reasons for the increased incidence are frequently obscure and often differ with the drug. Sometimes the increased incidence appears to be related to physiological changes that alter the responsiveness of action sites in tissues, whereas at other times it appears to be related to changes in pharmacokinetic factors that govern the concentration of the drug at the action sites. It seems likely, however, that the increased incidence is due to a combination of both of these kinds of changes that occur with age and it is frequently not evident which kind is the most important in any given instance.

Keywords

Liver Microsome Total Body Clearance Blood Flow Rate Intrinsic Clearance Unbind Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Seidl, L. G., Thorton, G. F., Smith, J. W. et al. Studies on the epidemiology of adverse drug reactions. III. Reactions in patients on a general medical service. Bull. Johns Hopk. Hosp. 119, 299–315, 1966.Google Scholar
  2. 2.
    Hurwitz, N.: Predisposing factors in adverse reactions to drugs. Brit. M.J., 1, 536–39, 1966.CrossRefGoogle Scholar
  3. 3.
    Bender, A. D.: Pharmacodynamic principles of drug therapy in the aged. J. Am. Ger. Soc. 22, 296–303, 1974.Google Scholar
  4. 4.
    Weiner, I. M.: Excretion of drugs by the kidney, in Hanûûüci der experimentellen pharmakologie, Vol. 28, Concepts in biochemical pharmacology, Part 1 (B. B. Brodie and J. R. Gillette, ed.) p. 328–353, Springer-Verlag, Berlin, Heidelberg, New York, 1971.Google Scholar
  5. 5.
    Williams, R. T.: Detoxication Mechanisms, Wiley, New York 1959.Google Scholar
  6. 6.
    Brodie, B. B., Gillette, J. R. and La Du, B. N.: Enzymatic metabolism of drugs and other foreign compounds. Ann. Rev. Biochem. 27, 427–454, 1958.PubMedCrossRefGoogle Scholar
  7. 7.
    Gillette, J. R.: Biochemistry of drug oxidation and reduction by enzymes in hepatic endoplasmic reticulum, Advanc. Pharmacol. 4, 219–261, 1966.Google Scholar
  8. 8.
    Ballou, D. P., Veeger, C., van der Hoeven, T. A. and Coon, M. J.: Properties of partially purified liver microsomal cytochrome P-450: acceptance of two electrons during anaerobic titration, FEBS Letters 38, 337–340, 1974.PubMedCrossRefGoogle Scholar
  9. 9.
    Baron, J., Hildebrandt, A. G., Peterson, J. A. and Estabrook, R. W.: The role of oxygenated cytochrome P-450 and cytochrome b5 in hepatic microsomal drug oxidations, Drug Metab. Disp. 1, 129–138, 1973.Google Scholar
  10. 10.
    Shenkman, J. B. and Janssen, I.: Interaction between microsomal electron transfer pathways in “Advances in Experimental Medicine”, Vol. 58. Cytochromes P-450 and b5 (D. Y. Cooper, O. Rosenthal, R. Snyder and C. Witmer ed.) p. 387–404, Plenum Press, New York, London, 1975.Google Scholar
  11. 11.
    Sasame, H. A., Mitchell, J. R.: Thorgeirsson, S. and Gillette, J. R.: Relationship between NADH and NADPH oxidation during drug metabolism. Drug-Metabol. Disp. 1, 150–155, 1973.Google Scholar
  12. 12.
    Correia, A. and Mannering, G. J.: DPNH synergism and TPNHdependent mixed function oxidase reactions. Drug Metabol. Distrib. 1, 139–149, 1973.Google Scholar
  13. 13.
    Mannering, G. J.: Role of cytochrome b5 in the NADH synergism of NADPH-dependent reactions of cytochrome P-450 monooxygenase system of hepatic microsomes. In “Advances in Experimental Medicine”, Vol. 58. Cytochrome P-450 and b5 (D. Y. Cooper, O. Rosenthal, R. Snyder and C. Witmer, ed.), p. 405–434, Plenum Press, New York, London, 1975.Google Scholar
  14. 14.
    Sasame, H. A., Thorgeirsson, S. S., Mitchell, J. R. and Gillette, J. R.: The role of cytochrome b5 in cytochrome P-450 enzymes. In “Advances in Experimental Medicine”, Vol. 58. Cytochrome P-450 and b5 (D. Y. Cooper, O. Rosenthal, R. Snyder, and C. Witmer, ed.), p. 435–446, Plenum Press, New York, London, 1975.Google Scholar
  15. 15.
    Haugen, D. A., van der Hoeven, T. A. and Coon, M. J.: Purified liver microsomal cytochrome P-450: Separation and characterization of multiple forms. J. Biol. Chem. 250, 3567–3570, 1975.PubMedGoogle Scholar
  16. 16.
    Ziegler, D. M., Jollow, D. and Cook, D. E.: Properties of a purified liver microsomal mixed-function amine oxidase. In Flavins and Flavoproteins, Intl. Symp. (H. Kamin, ed.) p. 507–522, University Park Press, Baltimore, 1971.Google Scholar
  17. 17.
    Machinist, J. M., Orme-Johnson, W. H. and Ziegler, D. M.: Microsomal oxidases. II. Properties of a pork liver microsomal N-oxide dealkylase. Biochemistry 5, 2939–2943, 1966.PubMedCrossRefGoogle Scholar
  18. 18.
    Bickel, M. H.: The pharmacology and biochemistry of N-oxide. Pharmacol. Rev. 21, 325–355, 1969.PubMedGoogle Scholar
  19. 19.
    Ziegler, D. M. and Pettit, F. H.: Microsomal oxidases. I. The isolation of dialkylarylamine oxygenase activity of pork liver microsomes. Biochemistry 5, 2932–2938, 1961.CrossRefGoogle Scholar
  20. 20.
    Masters, B. S. and Ziegler, D. M.: The distinct nature and function of NADPH cytochrome c reductase and the NADPH-dependent mixed-function amine oxidase of porcine liver microsomes. Arch. Biochem. Biophys. 145, 358–364, 1971.PubMedCrossRefGoogle Scholar
  21. 21.
    Ziegler, D. M., Mitchell, G. H. and Jollow, D.: The properties of a purified hepatic microsomal mixed-function amine oxidase. In “Microsomes and drug oxidations” (J. R. Gillette, A. H. Conney, G. J. Cosmides, R. W. Estabrook, J. R. Fouts, and G. J. Mannering, eds.), p. 173–188, Academic Press, New York, 1969.Google Scholar
  22. 22.
    Thorgeirsson, S., Jollow, D. J., Sasame, H. A., Green, I. and Mitchell, J. R.: The role of cytochrome P-450 in N-hydroxylation of 2-acetylamino fluorene. Mol. Pharmacol. 9, 398–404, 1973.PubMedGoogle Scholar
  23. 23.
    Boyland, E. and Chasseaud, L. F.: The role of glutathione and glutathione-S-transferases in mercapturic acid biosynthesis, Advanc. Enzymol. 32, 173–219, 1969.Google Scholar
  24. 24.
    Holtzman, J. L., Olllette, J. R. and Milne, G. W. A.: The incorporation of 0 into naphthalene in the enzymatic formation of 1,2-dihydronaphthalene-1,2-diol, J. Biol. Chem. 242, 4386–4387, 1967.PubMedGoogle Scholar
  25. 25.
    Jerina, D. M., Daly, J. W., Witkop, B., Zaltzman-Nirenberg, P. and Udenfriend, S. The role of arene oxide-oxepin system in the metabolism of aromatic substances. V. 1,2-Naphthalene oxide, product of microsomal metabolism of naphthalene, Biochemistry 9, 147–156, 1969.CrossRefGoogle Scholar
  26. 26.
    Jerina, D. M., Daly, J., Witkop, B., Zaltzman-Nirenberg, P. and Udenfriend, S. The role of the arene oxide-oxepin system in the metabolism of aromatic substrates. I. In vitro conversion of benzene oxide to a premercapturic acid and a dihydrodiol. Arch. Biochem. Biophys. 128, 176–183, 1968.Google Scholar
  27. 27.
    Maynert, E. W., Forman, R. L. and Watabe, T.: Epoxides as obligatory intermediates in the metabolism olefins to glycols, J. Biol. Chem. 245, 5234–5238, 1970.PubMedGoogle Scholar
  28. 28.
    Leibman, K. C. and Ortiz, E.: Oxidation of indene in liver microsomes, Mol. Pharmacol. 4, 201–207, 1968.Google Scholar
  29. 29.
    Jollow, D. J., Mitchell, J. R., Zampaglione, N., and Gillette, J. R.: Bromobenzene-induced liver necrosis: Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxie melabolite, Pharmacology 11, 151–159, 1974.PubMedCrossRefGoogle Scholar
  30. 30.
    Gillette, J. R., Kamm, J. J. and Sasame, H. A.: Mechanism of p-nitrobenzoate reduction in liver. The possible role of cytochrome P-450 in liver microsomes, Mol. Pharmacol. 4, 541–548, 1968.Google Scholar
  31. 31.
    Kato, R., Oshima, T. and Takanaka, A.: Studies on the mechanism of nitro reduction by rat liver, Mol. Pharmacol. 5, 487–498, 1969.Google Scholar
  32. 32.
    Fouts, J. R. and Brodie, B. B.: The enzymatic reduction of chloramphenicol, p-nitrobenzoic acid and other aromatic nitro compounds in mammals. J. Pharmacol. exp. Therap. 119, 197–207, 1957.Google Scholar
  33. 33.
    Morita, M., Feller, D. R. and Gillette, J. R.: Reduction of niridazole by rat liver xanthine oxidase. Biochemical Pharmacol. 20, 217–226, 1971.CrossRefGoogle Scholar
  34. 34.
    Feller, D. R., Morita, M. and Gillette, J. R.: Enzymatic reduction of niridazole by rat liver microsomes. Biochem. Pharmacol. 20, 203–215, 1971.PubMedCrossRefGoogle Scholar
  35. 35.
    Kato, R. and Takashi, A.: Characteristics of nitro reduction of the carcinogenic agents, 4-nitroquinolone N-oxide, Biochem. Pharmacol. 19, 45–55, 1970.Google Scholar
  36. 36.
    Hernandez, P. H., Gillette, J. R. and Mazel, P.: Studies on the mechanism of action of mammalian hepatic azoreductase. I. Azoreductase activity of reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase, Biochem. Pharmacol. 16, 1859–1876, 1967.Google Scholar
  37. 37.
    Hernandez. P. H., Mazel, P. and Gillette, J. R.: Studies on the mechanism of action of mammalian hepatic azoreductase. II. The effects of phenobarbital and 3-methylcholanthrene on carbon monoxide sensitive and insensitive azoreductase activities, Biochem. Pharmacol. 16, 1877–1888, 1967.Google Scholar
  38. 38.
    Gillette, J. R.: Reductive enzymes, In Handbuch der experimentellen pharmakologie, Vol. XXVIII, Concepts in biochemical pharmacology, Part 2 (B. B. Brodie and J. R. Gillette, ed.), p. 349–361, Springer-Verlag, Berlin, Heidelberg, New York, 1971.Google Scholar
  39. 39.
    Shargell, L. D.: Influence of electron carrier systems in the microsomal metabolism of drugs, Ph.D. thesis, George Washington University, Washington, D.C., 1969.Google Scholar
  40. 40.
    Watermann, M. R. and Mason, H. R.: The redox potential of liver cytochrome P-450, Biochem. Biophys. Res. Commun. 39, 450–454, 1970.CrossRefGoogle Scholar
  41. 41.
    Zachariah, P. K. and Juchau, M. R.: The role of gut flora in the reduction of aromatic nitro-groups, Drug Metabol. Dispos. 2, 74–78, 1974.Google Scholar
  42. 42.
    McMahon, R. E.: Enzymatic oxidation and reduction of alcohols, aldehydes and ketones, in Handbuch der experimentellen pharmakologie, Vol. XXVIII, Concepts in biochemical pharmacology, Part 2, (B. B. Brodie and J. R. Gillette, ed.), p. 500–517, Springer-Verlag, Berlin, Heidelberg, New York, 1971.Google Scholar
  43. 43.
    Leiber, C. S., Teschke, R., Hasumura, Y., and De Carli, L. M.: Differences in hepatic and metabolic changes after acute and chronic alcohol consumption. Federation Proc. 34, 2060–2074, 1975.Google Scholar
  44. 44.
    Thurman, R. G., McKenna, W. R., Brentzel, H. F. Jr. and Hesse, S.: Significant pathways of hepatic ethanol metabolism, Federation Proc. 34, 2075–2081, 1975.Google Scholar
  45. 45.
    La Du, B. N. and Snady, H.: Esterases in human tissues, in Handbuch der experimentellen pharmakologie, Vol. XXVIII. Concepts in biochemical pharmacology, Part 2 (B. B. Brodie and J. R. Gillette, ed), p. 477–499, Springer-Verlag, Berlin, Heidelberg, New York, 1971.Google Scholar
  46. 46.
    Junge, W. and Krisch, K.: The carboxylesterases/amidases of mammalian liver and their possible significance, Crit. Rev. Tox. 3, 371–434, 1975.CrossRefGoogle Scholar
  47. 47.
    Blomberg, F. and Raftell, M.: Enzyme polymorphism in rat liver microsomes and plasma membranes. 1. An immunochemical study of multienzyme complexes and other enzyme-active antigens, Eur. J. Biochem. 49, 21–29, 1974.PubMedCrossRefGoogle Scholar
  48. 48.
    Axelrod, J.: Methyltransferase enzymes in the metabolism of physiologically active compounds and drugs in Handbuch der experimentellen pharmakologie, Vol. XXVIII, Concepts in biochemical pharmacology, Part 2 (B. B. Brodie and J. R. Gillette, ed.), p. 609–619, Springer-Verlag, Berlin, Heidelber, New York, 1971.Google Scholar
  49. 49.
    Roy, A. B.: Sulfate conjugation enzymes in Handbuch der experimentellen pharmakologie, Vol. XXVIII Concepts in biochemical pharmacology, Part 2 (B. B. Brodie and J. R. Gillette, ed.), p. 536–563, Springer-Verlag, Berlin, Heidelberg, New York, 1971.Google Scholar
  50. 50.
    Weber, W. W.: Acetylating, deacetylating and amino acid conjugating enzymes in Handbuch der experimentellen pharmakologie, Vol. XXVIII, Concepts in biochemical pharmacology, Part 2, (B. B. Brodie and J. R. Gillette, ed.), p. 564–583, Springer-Verlag, Berlin, Heidelberg, New York, 1971.Google Scholar
  51. 51.
    Boyland, E.: Mercapturic acid conjugation, in Handbuch der experimentellen pharmakologie, Vol. XXVIII, Concepts in biochemical pharmacology, Part 2 (B. B. Brodie and J. R. Gillette, ed.), p. 584–608, Springer-Verlag, Berlin, Heidelberg, New York, 1971.Google Scholar
  52. 52.
    Habig, W. H., Pabst, M. J. and Jakoby, W. B.: Glutathione Stransferases. The first step in mercapturi acid formation, J. Biol. Chem. 249, 7130–7139, 1974.PubMedGoogle Scholar
  53. 53.
    Dutton, G. J.: Glucuronide-forming enzymes, in Handbuch der experimentellen pharmakologie, Vol. XXVIII, Concepts in biochemical pharmacology, Part 2 (B. B. Brodie and J. R. Gillette, ed), p. 378–400, Springer-Verlag, Berlin Heidelberg, New York, 1971.Google Scholar
  54. 53.
    Dutton, G. J.: Glucuronide-forming enzymes, in Handbuch der experimentellen pharmakologie, Vol. XXVIII, Concepts in bio-chemical pharmacology, rare 2 (B. B. Brodie, ed.), p. 378–400, Springer-Verlag, Berlin, Heidelberg, New York, 1971.Google Scholar
  55. 54.
    Oesch, F., Jerina, D. M. and Daly, J. W.: Substrate specificity of hepatic epoxide hydrase in microsomes and in a purified preparation: evidence for homologous enzymes, Arch. Biochem. Biophys. 144, 253–261, 1971.CrossRefGoogle Scholar
  56. 55.
    Oesch; F., Jerina, D. M., Daly, J. W., Lu, A. Y. H., Kuntzman,R. and Conney, A. H.: A reconstituted microsomal enzyme system that converts naphthalene to trans-1,2-dihydronaphthalene via naphthalene-1,2-oxides presence of epoxide hydrase in cytochrome P-450 and P-448 fractions, Arch. Biochem. Biophys. 153, 62–67, 1972.CrossRefGoogle Scholar
  57. 56.
    Kato, R., Vasanelli, P., Frontino, G. and Chiesara, E.: Variation in the activity of liver microsomal drug metabolizing enzymes in rats in relation to age. Biochemical Pharmacol. 13, 1037–1051, 1964.CrossRefGoogle Scholar
  58. 57.
    Kato, R. and Takanaka, A.: Metabolism of drugs in old rats: (1) Activities of NADPH-linked electron transport and drug-metabolizing enzyme systems in liver microsomes of old rats. Jap. J. Pharmac. 18, 381–388, 1968.CrossRefGoogle Scholar
  59. 58.
    Kato, R. and Takanaka, A.: Metabolism of drugs in old rats: (II). Metabolism in vivo and effect of drugs in old rats. Jap, J. Pharmac. 18, 389–396, 1968.Google Scholar
  60. 59.
    Kato, R., Takanaka, A. and Onoda, K.-l.: Studies on age difference in mice for the activity of drug-metabolizing enzymes of liver microsomes. Jap. J. Pharmac. 20, 572–576, 1970.CrossRefGoogle Scholar
  61. 60.
    Ewy, G. A., Kapadia, G. G., Yao, L., Lullin, M. and Marcus, F. I.: Digoxin metabolism in the elderly. Circulation 39, 449–453, 1969.PubMedCrossRefGoogle Scholar
  62. 61.
    Leikola, E. and Vartia, K. O.: On penicillin levels in young and geriatric subjects. J. Gerontol. 12, 48–52, 1957.PubMedCrossRefGoogle Scholar
  63. 62.
    Hansen, J. M., Kampmann, J., and Laursen, H,: Renal excretion of drugs in the elderly, Lancet 1, 1170.Google Scholar
  64. 63.
    Vartia, K. O. and Leikola, E.: Serum levels of antibiotics in young and old subjects following administration of dihydrostreptomycin and tetracycline. J. Gerontol. 15, 392–394, 1960.PubMedCrossRefGoogle Scholar
  65. 64.
    O’Malley, K., Crooks, J., Duke, E., and Stevenson, I. H.: Effect of age and sex on human drug metabolism, Brit. Med. J. 3, 607–609, 1971.CrossRefGoogle Scholar
  66. 65.
    Gillette, J. R.: Factors affecting drug metabolism, Ann. N.Y. Acad. Sci. 179, 43–66, 1971.PubMedCrossRefGoogle Scholar
  67. 66.
    Rowland, M., Benet, L. Z., and Graham, G. G.: Clearance concepts in pharmacokinetics, J. Pharmacokin. Biopharm. 1, 123–136, 1973.CrossRefGoogle Scholar
  68. 67.
    Wilkinson, G. R.: Pharmacokinetics of drug disposition: Hemodynamic considerations, Ann. Rev. Pharm. 15, 11–28, 1975.CrossRefGoogle Scholar
  69. 68.
    Gibaldi, M., Boyes, R. N. and Feldman, S.: Influence of first-pass effect on availability of drugs on oral administration, J. Pharm. Sci. 60, 1338–1340, 1971.PubMedCrossRefGoogle Scholar
  70. 69.
    Shand, D. G., Kornhauser, D. M. and Wilkinson, G. R.: Effects of route of administration and blood flow on hepatic drug elimination. J. Pharmacol. Exp. Therap. 195, 424–432, 1975.Google Scholar
  71. 70.
    Gillette, J. R.: Other aspects of pharmacokinetics. In Gillette, J. R. and Mitchell, J. R. (ed.), Handbuch der experimentellen pharmakologie, Heidelberg, New York, Springer-Verlag, p. 35–85, 1975.Google Scholar
  72. 71.
    Klotz, U., Avant, G. R., Hoyumpa, A., Schenker, S. and Wilkinson, G. R.: The effects of age and liver disease on the disposition and elimination of diazepam in adult man. J. Clin. Invest. 55, 347–359, 1975.PubMedCrossRefGoogle Scholar
  73. 72.
    Mitchell, J. R., Zimmerman, H. J., Ishak, K. G., Thorgeirsson, U. P., Timbrell, J. A., Snodgreass, W. R. and Nelson, S. D.: Isoniazid liver injury: Clinical spectrum, pathology and probable pathogenesis. Ann. Int. Med. 84, 181–192, 1976.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York  1978

Authors and Affiliations

  • James R. Gillette
    • 1
    • 2
  • Jack A. Hinson
    • 1
    • 2
  1. 1.Laboratory of Chemical PharmacologyNational Heart, Lung, and Blood InstituteBethesdaUSA
  2. 2.National Institutes of HealthBethesdaUSA

Personalised recommendations