Advertisement

Reinstatement of Ovarian Cycles in Aged Female Rats by Placement of L-Dopa in the Medial Preoptic Area

  • Ralph L. Cooper
  • Steven Brandt
  • Markku Linnoila
  • Louise H. Greenberg
  • Robert K. Dix
  • Benjamin Weiss
  • K. Reichlmeier
  • A. Enz
  • P. Iwangoff
  • W. Meier-Ruge
  • L. R. Weiss
  • S. Krop
  • Bryon N. de Sousa
  • Z. V. Kendrick
  • Jay Roberts
  • Steven I. Baskin
  • Thomas L. Klug
  • Richard C. Adelman
  • C. Lee Robinette
  • Michael G. Mawhinney
  • Cynthia J. Moore
  • Arthur G. Schwartz
  • R. N. Sorrentino
  • J. R. Florini
  • D. D. Schocken
  • G. S. Roth
  • P. J. Gill
  • D. M. Hanson
  • A. Y. Sun
  • G. Y. Sun
  • Walter X. Balcavage
  • Douglas Bell
  • Vincent J. Cristofalo
  • Torsten Alväger
  • James J. Leyden
  • Kenneth J. McGinley
  • Gary L. Grove
  • Albert M. Kligman
  • Phillip I. Good
  • N. I. Swislocki
  • J. Tierney
  • J. Zinberg
  • S. R. Pfeffer
  • K. D. Munkres
  • R. S. Rana
  • Edward M. Cohen
  • Paula B. Goldberg
  • Sallie-Ann Stoner
  • Nancy E. Olashaw
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 97)

Abstract

Systemic treatment with the catecholamine precursor 1-dopa has been shown to reinstate ovarian cycles in the aged female rat (Quadri et al., 1973; Linnoila and Cooper, 1976). In an effort to determine if this effect is mediated via the action of 1-dopa on CNS catecholamines, we observed ovarian function after placing small amounts of 1-dopa directly into selected brain regions of aged rats (14 to 22 months old) bearing chronically implanted cannulae. Ovarian cycles could be reliably reinstated when 1-dopa was placed in the medial preoptic area of constant estrus or recurrently pseudopregnant females. This treatment was more effective (i.e. greater proportion of females responding.) and of longer duration (i.e. greater number of cycles observed) in 14–16 month old females than in the 22 month old females. Placement of 1-dopa in the septum, hippocampus or cortex had no effect on ovarian function. Placement of the norepinephrine precursor dlthreo-dihydroxyphenylserine (DOPS) or the neutral amino acid leucine in the four brain regions was without effect on ovarian function. The results will be discussed in terms of possible regional changes in brain amines with age.

Keywords

Seminal Vesicle Ventral Prostate Human Embryonic Lung Fibroblast Late Passage Cell Anterior Prostate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tuttle, R. S. J. Gerontol. 21: 510–516, 1966.PubMedCrossRefGoogle Scholar
  2. 2.
    Bitensky, M. W., Russell, V. and Blanco, M. Endocrinol. 86: 154–159, 1970.CrossRefGoogle Scholar
  3. 3.
    Fleisch, J. H., Maling, H. M. and Brodie, B. B. Circulation Res. 26: 151–162.Google Scholar
  4. 4.
    Forn, J., Schonhoffer, P. S., Skidmore, I. F. and Krishna, G. Biochim. Biophys. Acta 208: 304–309, 1970.PubMedCrossRefGoogle Scholar
  5. 5.
    Cooper, B. and Gregerman, R. I. J. Clin. Investigation 57: 161–168, 1976.CrossRefGoogle Scholar
  6. 6.
    Puri, S. K. and Volicer, L. Mechanisms of Aging and Develop. 6: 53–58, 1977.CrossRefGoogle Scholar
  7. 7.
    Walker, J. B. and Walker, J. P. Brain Res. 54: 391–396, 1973.PubMedCrossRefGoogle Scholar
  8. 8.
    Lefkowitz, R. J. In:Methods in Receptor Research, Part 1. M. Blechner, ed., Marcel Dekker, Inc., N.Y. pp. 53–72, 1976.Google Scholar
  9. 9.
    Lefkowitz, R. J., Mukherjee, C., Coverstone, M. and Caron, M. G. Biochem. Biophys. Res. Commun. 60: 703–709, 1974.PubMedCrossRefGoogle Scholar
  10. 10.
    Alexander, R. W., Davis, J. H. and Lefkowitz, R. J. Nature 258: 437–440, 1975.CrossRefGoogle Scholar
  11. 11.
    Scatchard, G. Ann. N.Y. Acad. Sci. 51: 660, 1949.CrossRefGoogle Scholar
  12. 12.
    Brizzee, K. R., Sherwood, H. and Timiras, P.S. J. Gerontol. 23: 289–297, 1968.PubMedCrossRefGoogle Scholar
  13. 1.
    Iwangoff, P., Armbruster, R., and Enz, A.:Z. Physiol. Chem., 1977, in press.Google Scholar
  14. 2.
    Reichlmeier, K., Ermini, M., and Schlecht, H.-P.: Aktuelle Gerontol., 1977, in press.Google Scholar
  15. 3.
    Reichlmeier, K.:J. Neurochem. 27, 1249, 1976.PubMedCrossRefGoogle Scholar
  16. Abdel-Latif, A.A., Yamaguchi, M., Smith, J. and Yamaguchi, T. (1968). Studies on the effect of ouabain on sodium and phosphate uptake into nerve endings of developing rat brain. Life Sci. 7: 1325.CrossRefGoogle Scholar
  17. Akera, T. (1971). Quantitative aspects of the interaction between ouabain and the Na+, K+ -ATPase. Biochim. Biophys. Acta 245: 53.Google Scholar
  18. Bonting, S.L. and Caravaggio, L.L. (1963). Studies on sodiumpotassium activated adenosine triphosphatase. V. Correlation of enzyme activity with cation flux in six tissues. Arch. Biochem. Biophys. 101: 37.PubMedCrossRefGoogle Scholar
  19. de Sousa, B.N. and Horrocks, L.A. (1976). A simple method for the removal of mouse and rat spinal cord. Soc. Neurosci. 2: 974.Google Scholar
  20. Schwartz, A., Lindenmayer, G.E. and Allen, J.C. (1975). The sodium-potassium adenosine triphosphatase:Pharmacological, physiological and biochemical aspects. Pharmacol. Rev. 27: 3.PubMedGoogle Scholar
  21. Skou, J.C. (1957). The influence of some cations on an adenosine triphosphatase from peripheral nerve. Biochim. Biophys. Acta 23: 394.PubMedCrossRefGoogle Scholar
  22. Skou, J.C. (1965) Enzymatic basis of active transport of Na+ and K+ across cell from peripheral nerve. Biochim. Biophys. membrane. Physiol. Rev. 45: 596.Google Scholar
  23. 1.
    Klug, T. L. and R. C. Adelman. (manuscript in progress).Google Scholar
  24. 2.
    Gregerman, R. I. and E. L. Bierman. ‘Aging and Hormones’ In:Textbook of Endocrinology, R. H. Williams (ed.), 5th edition, W. B. Saunders, Philadelphia (1974) p. 1059Google Scholar
  25. 3.
    Good, B. F. and N. S. Stenhouse. Endocrinology 78: 429 (1966).PubMedCrossRefGoogle Scholar
  26. 4.
    Shishiba, Y. and D. H. Solomon. J. Clin. Endocrinol. Metab. 29: 405 (1969).CrossRefGoogle Scholar
  27. 5.
    La Bella, F. S. and J. H. U. Brown. J. Biophysic. and Biochem. Cytol. 5: 17 (1959).CrossRefGoogle Scholar
  28. 6.
    Yalow, R. S. and S. A. Berson. Biochem. Biophys. Res. Commun. 44: 439 (1971).PubMedCrossRefGoogle Scholar
  29. 7.
    Steiner, D. F., D. Cunningham, L. Spigelman, and B. Alten. Science 157: 697 (1967).PubMedCrossRefGoogle Scholar
  30. 8.
    Friesen, H., H. Guyda, and J. Hardy. J. Clin. Endocrinol. Metab. 31: 611 (1970).PubMedCrossRefGoogle Scholar
  31. 9.
    Sherwood, L. M., J. S. Rodman, and W. B. Lindberg. Proc. Natl. Acad. Sci. USA 67: 1631 (1970).PubMedCrossRefGoogle Scholar
  32. 10.
    Noe, B. D. and G. E. Bauer. Endocrinology 89: 642 (1971).PubMedCrossRefGoogle Scholar
  33. 11.
    Yalow, R. S. and S. A. Berson. Gastroenterology 58: 609 (1970).PubMedGoogle Scholar
  34. 12.
    Gregory, R. A. and M. A. Tracy. Mt. Sinai J. Med.-40: 359 (1973).Google Scholar
  35. 13.
    Gorden, P., C. M. Hendricks, and J. Roth. J. Clin. Endocrinol. Metab. 36: 178 (1973).PubMedCrossRefGoogle Scholar
  36. 14.
    Roth, J., P. Gorden, and I. Pasten. Proc. Natl. Acad. Sci. USA 61: 138 (1968).PubMedCrossRefGoogle Scholar
  37. 15.
    Duckworth, W. C. and A. E. Kitabchi. J. Lab. Clin. Med. 88: 359 (1976).PubMedGoogle Scholar
  38. 1.
    Shimazaki, J., I. Matsushita, N. Furuya, H. Yamanaka and K. Shida:Reduction of 5a-position of testosterone in the rat ventral prostate. Endocrinol. Japon. 16: 453, 1969.CrossRefGoogle Scholar
  39. 2.
    Axelrod, L. R., J. P. Philpott and J. E. Burdett:Qualitative and quantitative changes in the metabolism of testosterone in prostate of rat and dog as a function of age. Endocrinology 92 (Suppl.): A-96 (Abstract #95), 1973.Google Scholar
  40. 3.
    Shain, S. and L. R. Axelrod:Reduced high affinity 5a-dihydrotestosterone receptor capacity in the ventral prostate of the aging rat. Steroids 21: 801, 1973.PubMedCrossRefGoogle Scholar
  41. 4.
    Shain, S. A., R. W. Boesel, and L. R. Axelrod:Aging in the rat prostate. Archs. Biochem. Biophys. 167: 247, 1975.CrossRefGoogle Scholar
  42. 5.
    Schneider, W. C.:In Methods in Enzymology, Vol. 3. ( Coldwic and Kaplan, Eds.), Academic Press, New York, 1957.Google Scholar
  43. 6.
    Hutchinson, W. C. and H. N. Munro:The determination of nucleic acids in biological materials. The Analyst 86: 768, 1961.CrossRefGoogle Scholar
  44. 7.
    Tisell, L.-E.:The growth of the ventral prostate, the dorsolateral prostate, the coagulating glands and the seminal vesicles in castrated adrenalectomized rats injected with oestradiol and/or cortisone. Acta Endocr., Copenh. 68: 485, 1971.Google Scholar
  45. 1.
    Hochschild, R., Exptl. Gerontology, 6, 153 (1971).CrossRefGoogle Scholar
  46. 2.
    Hochschild, R., Exptl. Gerontology, 8, 173 (1973).CrossRefGoogle Scholar
  47. 3.
    Nandy, K., Coloquim Internationale Neuropsycho-pharmacalogia Xth Congress, Quebec, Canada, July 4–9, (1976).Google Scholar
  48. 4.
    Hochschild, R., Exptl. Gerontology, 8, 185 (1973).CrossRefGoogle Scholar
  49. 5.
    Cherkin, A., and Eckardt, M. J., J. Gerontology 32, 38 (1977).CrossRefGoogle Scholar
  50. 6.
    Hochschild, R., J. Gerontology 28, 450 (1973).CrossRefGoogle Scholar
  51. 7.
    Gianetto, R., and DeDuve, C., Biochem, J., 59, 433 (1955).Google Scholar
  52. 8.
    Blum, J., J. Cell Physiol., 86, 131 (1975).PubMedCrossRefGoogle Scholar
  53. 9.
    Russell, W. C., Newman, C., and Williamson, D. H., Nature 253, 461 (1975).PubMedCrossRefGoogle Scholar
  54. 10.
    Spoerri, P. E., and Glees, P., Mechanisms of Aging and Develop-Ment 3, 131 (1974).CrossRefGoogle Scholar
  55. 11.
    Hasan, M., Glees, P., and Spoerri, P. E., Cell and Tissue Research, 150, 369 (1974).PubMedCrossRefGoogle Scholar
  56. 12.
    Schneider, F. H., and Nandy, K., J. Gerontology 32, 132 (1977).CrossRefGoogle Scholar
  57. 13.
    Thrash, C., and Cunningham, D., Nature 242, 399 (1973).PubMedCrossRefGoogle Scholar
  58. 14.
    Rubin, H., J. Cell Physiol., 89, 613 (1976).PubMedCrossRefGoogle Scholar
  59. 1.
    Sun, G. Y. & Samorajski, T. (1973) Biochim Biophys. Acta 316: 19–27.Google Scholar
  60. 2.
    Sun, A. Y. & Samorajski, T (1975) J. Neurochem. 24: 161–164.PubMedCrossRefGoogle Scholar
  61. 3.
    Sun, A. Y. & Seaman, R. N. (1977) Exp. Aging Res. (in press).Google Scholar
  62. 4.
    Grinna, L. S. & Barber, A. A. (1972) Biochim. Biophys. Acta 288: 347–353.PubMedCrossRefGoogle Scholar
  63. 5.
    Hawcroft, D. M. & Martin, P. A. (1974) Mech. Aging Develop. 3: 121–130.CrossRefGoogle Scholar
  64. 6.
    Finch, C. E. (1972) Exp. Geront. 7: 53–67.CrossRefGoogle Scholar
  65. 7.
    Wilson, P. D. (1973) Gerontologia 19: 79–125.PubMedCrossRefGoogle Scholar
  66. 8.
    Tappel, A. Flettcher, B & Deamer, D. (1973) J. Geront. 28: 415–424PubMedCrossRefGoogle Scholar
  67. 9.
    Tappel, A. Flettcher, B & Deamer, D. (1971) J. Geront. 26: 451–457.CrossRefGoogle Scholar
  68. 10.
    Harman, D. (1971) J. Geront. 263: 378–380.Google Scholar
  69. 11.
    Kohn, R. R. T., Pope, A. L., Gunther, H. E. & Hoekstra, W. G. Nutrition 112: 689–696.Google Scholar
  70. 12.
    Rotruck, J (1972) J. Sun, A. Y. & Sun, G. Y. (1976) in Function and Metabolism of Phospholipids in the Central and Peripheral Nervous System (G. Porcellati, L. Amaducci & C. Galli, eds), Plenum Press, New York, pp 169–197.Google Scholar
  71. 13.
    Sun, A. Y. (1974) J. Neurochem. 22: 551–556.PubMedCrossRefGoogle Scholar
  72. 14.
    Sun, A. Y. & Samorajski, T. (1970) J. Neurochem. 17: 1365–1372.PubMedCrossRefGoogle Scholar
  73. 15.
    Romanoff, L. P., Baxter, M. N., Thomas, A. W. & Ferrechio, G. B. (1969) J. Clin. Endocrinol. & Metabolism 28: 98.Google Scholar
  74. 16.
    Romanoff, L. P., Thomas, A. W. & Baxter, M. N. (1970) J. Geront. 25: 98.PubMedCrossRefGoogle Scholar
  75. 17.
    Ingraham, D. L. (1959) J. Endocrinol. 13: 182.CrossRefGoogle Scholar
  76. 18.
    Sun, A. Y., Sun, G. Y. & Middleton, C. C. (1977) Currents in Alcoholism 1: 81–94.Google Scholar
  77. 19.
    Hoekstra, W. G. (1975) Fed. Proc. 34: 2083–2089.PubMedGoogle Scholar
  78. 1.
    Chio, K. S. and A. L. Tappel. Biochemistry, 8, 2827 (1969)PubMedCrossRefGoogle Scholar
  79. 2.
    Malshet, V. G., A. L. Tappel and W. M. Burns. Lipids, 9, 328, (1974)PubMedCrossRefGoogle Scholar
  80. 3.
    Alvager, T. and W. X. Balcavage. Biochem. Biophys. Res. Commun. 58, 1039 (1974)PubMedCrossRefGoogle Scholar
  81. 4.
    Masoro, E. J. in “Exploration in Aging.” Editors V. Cristofalo, and R. Adelman, Plenum Press (1975) p. 81.Google Scholar
  82. 1.
    McGinley, K. J., R. R. Marples & G. Plewig:Method for visualizing and quantitating the desquamating portion of the human stratum corneum. J. Invest. Derm.. 53: 107–111, 1969.PubMedGoogle Scholar
  83. 2.
    Kligman, A. M., R. R. Marples, L. R. Lantis & K. J. McGinley:Appraisal of efficacy of anti-dandruff formulations. J. Soc. Cosm. Chem. 25: 73–91, 1974.Google Scholar
  84. 3.
    Kligman, A. M., K. J. McGinley & J. J. Leyden:The nature of dandruff. J. Soc. Cosm. Chem. 27: 111–139, 1976.Google Scholar
  85. 4.
    Plewig, G. & A. M. Kligman:The effect of selenium sulfide on epidermal turnover of normal and dandruff scalps. J. Soc. Cosm. Chem. 20: 767–775, 1969.Google Scholar
  86. 1.
    Good, P. A technique for in vitro geriatric assay, In Vitro 10 (74)392.Google Scholar
  87. 2.
    Smith, J. R., Smith 0., and Good, P., Clone size heterogeneity as a measure of ageing in human diploid cells, to appear in Mech. Age. Develop. 1977.Google Scholar
  88. 3.
    Good, P. and Smith, J. R., A stochastic model for in vitro aging. I. Age distribution of human diploid fibroblasts, Biophys. J. 14(74)811.Google Scholar
  89. 4.
    Good, P., A stochastic model for in vitro aging. II. A theory of marginotomy. J. Theoret. Biol. 64(1977)100.Google Scholar
  90. 5.
    Good, P., Aging in mammalian cell populations:A review, Mech. Age. Develop. 4(75)339.Google Scholar
  91. 6.
    Cox, D. R. and Miller, H. D., Theory of stochastic processes, New York, John Wiley & Sons, 1965.Google Scholar
  92. 1.
    Pfeffer, S. R., Swislocki, N. I.:Arch. Biochem. Biophys. 177: 117–122, 1976.PubMedCrossRefGoogle Scholar
  93. 2.
    De Gowin, R. L.:Arch. Intern. Med. 120: 242–248, 1967.CrossRefGoogle Scholar
  94. 3.
    Cline, M. J., Berlin, N. I.:J. Lab. and Clin. Med. 60: 826–832, 1962.Google Scholar
  95. 4.
    Borun, E. R., Figueroa, W. G., Perry, S. M.:J. Clin. Invest. 34: 676–679, 1957.CrossRefGoogle Scholar
  96. 5.
    Dodge, J. T., Mitchell, C., Hanahan, D. J.:Arch. Biochem. Biophys. 100: 119–130, 1963.PubMedCrossRefGoogle Scholar
  97. 6.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.:J. Biol. Chem. 193: 265–275, 1951.PubMedGoogle Scholar
  98. 7.
    Rasbridge, M. R., Scott, G. L.:Br. J. Haematol. 24: 183–193, 1973.PubMedCrossRefGoogle Scholar
  99. 8.
    Goldstein, B. D., McDonagh, E. M.:J. Clin. Invest. 57: 1302–1307, 1976.PubMedCrossRefGoogle Scholar
  100. 1.
    American Heart Association. Heart Facts, (1976).Google Scholar
  101. 2.
    Goldberg, P. B., and Roberts, J. In:Special Review of Experimental Aging Research, Progress in Biology. (Eds.) M. F. Elias, B. F. Eleftheriou, and P. K. Elias, Experimental Aging Research, Bar Harbor, (1976), p. 71.Google Scholar
  102. 3.
    Roberts, J., and Goldberg, P. B. Exp. Aging Res. 2 (6): 487 (1976).PubMedCrossRefGoogle Scholar
  103. 4.
    Weld, F. M., and Bigger, J. T., Jr. Circulation Res. 37: 630 (1975).PubMedCrossRefGoogle Scholar
  104. 5.
    Kohlhardt, M., Bauer, B., Krause, H., and Fleckenstein, A. Experientia 28 (3): 228 (1972).CrossRefGoogle Scholar
  105. 1.
    American Heart Association. Heart Facts, (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York  1978

Authors and Affiliations

  • Ralph L. Cooper
    • 1
  • Steven Brandt
    • 1
  • Markku Linnoila
    • 1
  • Louise H. Greenberg
    • 2
  • Robert K. Dix
    • 2
  • Benjamin Weiss
    • 2
  • K. Reichlmeier
    • 3
  • A. Enz
    • 3
  • P. Iwangoff
    • 3
  • W. Meier-Ruge
    • 3
  • L. R. Weiss
    • 4
  • S. Krop
    • 4
  • Bryon N. de Sousa
    • 2
  • Z. V. Kendrick
    • 2
  • Jay Roberts
    • 2
  • Steven I. Baskin
    • 2
  • Thomas L. Klug
    • 5
  • Richard C. Adelman
    • 5
  • C. Lee Robinette
    • 6
  • Michael G. Mawhinney
    • 7
  • Cynthia J. Moore
    • 8
  • Arthur G. Schwartz
    • 8
  • R. N. Sorrentino
    • 9
  • J. R. Florini
    • 9
  • D. D. Schocken
    • 10
  • G. S. Roth
    • 10
  • P. J. Gill
    • 11
  • D. M. Hanson
    • 11
    • 12
  • A. Y. Sun
    • 13
  • G. Y. Sun
    • 13
  • Walter X. Balcavage
    • 14
    • 17
    • 18
  • Douglas Bell
    • 14
  • Vincent J. Cristofalo
    • 14
    • 15
  • Torsten Alväger
    • 16
  • James J. Leyden
    • 19
  • Kenneth J. McGinley
    • 19
  • Gary L. Grove
    • 19
    • 15
  • Albert M. Kligman
    • 19
  • Phillip I. Good
    • 20
  • N. I. Swislocki
    • 21
  • J. Tierney
    • 21
  • J. Zinberg
    • 21
  • S. R. Pfeffer
    • 21
  • K. D. Munkres
    • 22
  • R. S. Rana
    • 22
  • Edward M. Cohen
    • 2
  • Paula B. Goldberg
    • 2
  • Sallie-Ann Stoner
    • 2
  • Nancy E. Olashaw
    • 15
  1. 1.Center for the Study of Aging and Human DevelopmentDuke University Medical CenterDurhamUSA
  2. 2.Department of PharmacologyMedical College of PennsylvaniaPhiladelphiaUSA
  3. 3.Basic Medical Research Department SANDOZ LTD., BaselBaselSwitzerland
  4. 4.Division of Drug BiologyFood and Drug AdministrationUSA
  5. 5.Fels Research Institute and Departments of Biochemistry and MedicineTemple University School of MedicineUSA
  6. 6.Department of Surgery (Division of Urology)West Virginia University Medical CenterMorgantownUSA
  7. 7.Departments of Pharmacology and Surgery (Division of Urology)West Virginia University Medical CenterMorgantownUSA
  8. 8.Department of Microbiology and Fels Research InstituteTemple Medical SchoolPhiladelphiaUSA
  9. 9.Biology DepartmentSyracuse UniversitySyracuseUSA
  10. 10.Gerontology Research Center, National Institute on AgingBaltimore City HospitalsBaltimoreUSA
  11. 11.Research ServiceVeterans Administration HospitalBedfordUSA
  12. 12.Department of Biochemistry BostonUniversity School of MedicineBostonUSA
  13. 13.Sinclair Comparative Medicine Research FarmUniversity of MissouriColumbiaUSA
  14. 14.Terre Haute Center for Medical EducationIndiana University School of MedicineTerre HauteUSA
  15. 15.The Wistar Institute of Anatomy and BiologyPhiladelphiaUSA
  16. 16.Department of PhysicsIndiana State UniversityTerre HauteUSA
  17. 17.Department of ChemistryIndiana State UniversityTerre HauteUSA
  18. 18.Terre Haute Center for Medical Education and Department of BiochemistryIndiana University School of MedicineUSA
  19. 19.Department of DermatologyThe University of PennsylvaniaPhiladelphiaUSA
  20. 20.The Upjohn CompanyKalamazooUSA
  21. 21.Memorial Sloan-Kettering Cancer CenterNew YorkUSA
  22. 22.Laboratories of Molecular Biology and GeneticsThe University of WisconsinMadisonUSA

Personalised recommendations