Neuropharmacology and Aging

  • A. Horita
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 97)


It is difficult to discuss the subject of the neuropharmacology of aging when it is well known that we presently have very few agents which can be classified as such. Many psychotropic drugs are used in the elderly, either to treat specific neuropsychiatric disorders, or in an attempt to treat the signs and symptoms associated with the “organic brain syndromes.” In the former cases the therapeutic approach is straightforward provided appropriate precautions and hazards specific to the elderly be recognized (1–3). It is in the latter cases, the “organic brain syndromes,” where pharmacological intervention has met essentially without success, and where the greatest need exists for the development of newer therapeutic agents.


Monoamine Oxidase Psychotropic Drug Tardive Dyskinesia Aging Brain Mandelic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stotsky, B. Use of Psychopharmacologic Agents for Geriatric Patients. In: Clinical Handbook of Psychopharmacology, pp. 265–278, ed. by A. D. Mascio and R. J. Shader; Jason Aronson, N. Y., 1970.Google Scholar
  2. 2.
    Glickman, L. and Friedman, S. A. Changes in behavior, mood or thinking in the elderly. Med. Clin. of N. Amer. 60: 1297–1313, 1976.Google Scholar
  3. 3.
    Freeman, J. T. Some principles of medication in geriatrics. J. Am. Geriatr. Soc. 22: 289–295, 1974.PubMedGoogle Scholar
  4. 4.
    Meier-Ruge, W. Experimental pathology and pharmacology in brain research and aging. Life Sciences 17: 1627–1636, 1975.PubMedCrossRefGoogle Scholar
  5. 5.
    Meier-Ruge, W., Reichlmeier, K. and Iwangoff, P. Enzymatic and enzyme histochemical changes of the aging animal brain and consequences for experimental pharmacology on aging. In: Neurobiology of Aging, pp. 379–387 ed by R. D. Terry and S. Gershon, Raven Press, N. Y., 1976.Google Scholar
  6. 6.
    Shelanski, M. L. Neurochemistry of aging: Review and pro- spectus. In: Neurobiology of Aging, pp. 339–349, ed. by R. D. Terry and S. Gershon, Raven Press, N. Y., 1976.Google Scholar
  7. 7.
    Domino, E. F., Dren, A. T. and Giardina, W. J. Biochemical and neurotransmitter changes in the aging brain. In: A Review of Psychopharmacology: A Second Decade of Progress, ed. by M. Lipton, A. Dimascio and K. Killam, Raven Press N. Y., 1977 (in press).Google Scholar
  8. 8.
    Meyer, J. S., Welch, K. M. A., Titus, J. L., Suzuki, M., Kim H-S., Perez, F. J., Mathew, N. T., Gedye, J. L., Hrastnik, F., Miyakawa, Y., Achar, V. S., and Dodson, R. F. Neurotransmitter failure in cerebral infarction and dementia. In: Neurobiology of Aging, pp. 121–138, ed. by R. D. Terry and S. Gershon, Raven Press, N. Y., 1976.Google Scholar
  9. 9.
    McGeer, E. and McGeer, P. L. Neurotransmitter metabolism in the aging brain. In: Neurobiology of Aging, pp. 389–403, ed. by R. D. Terry and S. Gershon, Raven Press, N. Y., 1976.Google Scholar
  10. 10.
    Vernadakis, A. Neuronal-glial interactions during development and aging. Fed. Proc. 34: 89–95, 1975.PubMedGoogle Scholar
  11. 11.
    Weiner, N. Neurotransmitter systems in the central nervous system. In: Drugs and the Developing Brain, pp. 105–131, ed. by A. Vernadakis and N. Weiner, Plenum Publ. Corp., N. Y., 1974.CrossRefGoogle Scholar
  12. 12.
    Fonnum, F. Review of recent progress in the synthesis, storage, and release of acetylcholine. In: Cholinergic Mechanisms, pp. 145–160, ed. by P. G. Waser, Raven Press, N. Y., 1975.Google Scholar
  13. 13.
    MacIntosh, F. C. and Collier, B. Neurochemistry of cholinergic terminals. In: Neuromuscular Junction, Hankbook of Experimental Pharmacology, Vol. 42, pp. 99–228, ed. by E. Zaimis, Springer-Verlag, Berlin, 1976.CrossRefGoogle Scholar
  14. 14.
    Leonard, B. E. Neurochemical and neuropharmacological aspects of depression. Int. Rev. Neurobiol. 18: 357–387, 1975.PubMedCrossRefGoogle Scholar
  15. 15.
    Van Rossum, J. M., Janssen, P. A. J., Boissier, J. R., Julov, L., Loew, D. M., Moller-Nielsen, I., Munkrad, I., Randrup, A., Stille, G. and Tedeschi, D. H. Pharmacology, Chapt. 3. In: The Neuroleptics, Vol. 5 of Modern Problems of Pharmacopsychiatry, pp. 23–70, ed. by D. P. Bobon, P. A. J. Janssen and J. Bobon, S. Karger, Basel, 1970.Google Scholar
  16. 16.
    Snyder, S. H., Banerjee, S. P., Yamamura, H. I. and Greenberg, D. Drugs, Neurotransmitters and Schizophrenia. Science 184: 1243–1253, 1974.PubMedCrossRefGoogle Scholar
  17. 17.
    Snyder, S. H. The dopamine hypothesis of schizophrenia: Focus on the dopamine receptor. Am. J. Psychiat. 133: 197–202, 1976.PubMedGoogle Scholar
  18. 18.
    Carlsson, A. Antipsychotic drugs and catecholamine synapses. J. Psychiat. Res. 11: 57–64, 1974.PubMedCrossRefGoogle Scholar
  19. 19.
    Matthysse, S. Dopamine and the pharmacology of schizophrenia: The state of the evidence. J. Psychiat. Res. 11: 107–113, 1974.PubMedCrossRefGoogle Scholar
  20. 20.
    Robinson, D. S., Davis, J. M., Nies, A. Relation of sex and aging to monoamine oxidase activity of human brain, plasma and platelets. Arch. Gen. Psychiat. 24: 536–539, 1971.PubMedCrossRefGoogle Scholar
  21. 21.
    Robinson, D. S. Changes in monoamine oxidase and monoamines with human development and agign. Fed. Proc. 34: 103–107, 1975.PubMedGoogle Scholar
  22. 22.
    Nies, A., Robinson, D. S., Davis, J. M. and Ravaric, C. L. Changes in monoamine oxidase with aging. In: Psychopharma-cology and Aging, pp. 41–53, ed. by C. Eisdorfer and W. E. Fann, Plenum, N. Y., 1974.Google Scholar
  23. 23.
    Horita, A. Cardiac monoamine oxidase in rat. Nature 215: 411–412, 1971.CrossRefGoogle Scholar
  24. 24.
    Horita, A. and Lowe, M. C. On the extraneuronal nature of cardiac monoamine oxidase in the rat. In: Monoamine OxidasesNew Vistas. Adv. Biochem. Psychopharmacol. 5:227–242, ed. By E. Costa and M. Sandler, Raven Press, N. Y., 1972.Google Scholar
  25. 25.
    Lowe, M. C., Reichenbach, D. and Horita, A. Extraneuronal monoamine oxidase in rat heart: Biochemical characterization and electron microscopic localization. J. Pharmacol. Exper. Therap. 194: 522–536, 1975.Google Scholar
  26. 26.
    Breese, G. R. and Traylor, T. D. Effect of 6-hydroxydopamine on brain norepinephrine and dopamine: Evidence for selective degeneration of catecholamine neurons. J. Pharmacol. Exper. Therap. 174: 413–420, 1970.Google Scholar
  27. 27.
    MacFarlane, M. D. Possible rationale for procaine (Gerovital 1 and 3) therapy in geriatrics: Inhibition of monoamine oxidase. J. Am. Geriat. Soc. 21: 414–418, 1973.PubMedGoogle Scholar
  28. 28.
    MacFarlane, M. D. Procaine HC1 (Gerovital H3): A weak, reversible, fully competitive inhibitor of monoamine oxidase. Fed. Proc. 34: 108–110, 1975.PubMedGoogle Scholar
  29. 29.
    Hornykiewicz, O. Biochemical and pharmacological aspects of akinesia. In: Parkinson’s Disease, pp. 128–149, ed. by J. Siegfried, Hans Huber Publishers, Bern, 1972.Google Scholar
  30. 30.
    Barbeau, A. Functions of the striatum. In: Monoamines noyaux Gris Centraux et Syndrome de Parkinson, pp. 385–402, ed. by J. de Ajuriaguerra, Masson & Cie, Geneva, 1971.Google Scholar
  31. 31.
    Domino, E. F. and Davis, J. M. Neurotransmitter Balances Regulatory Behavior, pp. 1–240, Publ. by Edwards Bros., Inc., Ann Arbor, 1975.Google Scholar
  32. 32.
    Antelman, S. M. and Caggiula, A. R. Norepinephrine-dopamine interactions and behavior. Science 195: 646–653, 1977.PubMedCrossRefGoogle Scholar
  33. 33.
    Barbeau, A. Aging and the extrapyramidal system. J. Amer. Geriat. Soc. 21: 145–149, 1973.Google Scholar
  34. 34.
    Barbeau, A. Parkinson’s Disease: Etiological considerations. In: The Basal Ganglia, pp. 281–292, ed. by M. D. Yahr, Raven Press, N. Y., 1976.Google Scholar
  35. 35.
    Pearse, A. G. E. The cytochemistry and ultrastructure of polypeptide hormone producing cells of the APUD series and the embryologic physiologic and pathologic implications of the concept. J. Histochem. Cytochem. 17: 393–313, 1969.CrossRefGoogle Scholar
  36. 36.
    Cotzias, G. C., Van Ubert, M. H. and Schiffer, L. Aromatic amino acids and modifications of Parkinsonism. N. Eng. J. Med. 276: 374–379, 1967.CrossRefGoogle Scholar
  37. 37.
    Barbeau, A. Potentiation of levodopa effect by intravenous L-propyl-L-leucyl-glycine amide in man. Lancet 2: 683–684, 1975.PubMedCrossRefGoogle Scholar
  38. 38.
    Nandy, K. and Schneider, H. Lipofuscin pigment formation in neuroblastoma cells in culture. In: Neurobiology of Aging, pp. 245–264, ed. by R. D. Terry and S. Gershon, Raven Press, N. Y., 1976.Google Scholar
  39. 39.
    Stein, L. and Wise, C. D. Possible etiology of schizophrenia: Progressive damage to the noradrenergic reward system by 6hydroxydopamine. Science 171: 1032–1036, 1971.PubMedCrossRefGoogle Scholar
  40. 40.
    Senoh, S., Creveling, C. R., Udenfriend, S. and Witkop, B. Chemical, enzymatic and metabolic studies on the mechanism studies on the mechanism of oxidation of dopamine. J. Amer. Chem. Soc. 81: 6236–6240, 1959.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York  1978

Authors and Affiliations

  • A. Horita
    • 1
  1. 1.Department of PharmacologyUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations